摘要
对IGBT模块使用寿命进行预测是评估其健康状态和可靠性的有效手段。基于IGBT老化实验测量,构建了包括饱和压降和结温的二维IGBT状态检测指标。对于归一化后的数据,提出了分段处理方法,去除了IGBT键合线断裂引起的较大指标波动。以饱和压降和结温数据为基础,提出了基于BP神经网络算法的IGBT剩余寿命预测模型。针对同样本不同通道、不同实验条件样本等情况,验证了本模型在剩余寿命预测中的准确性。
Predicting the service life of IGBT modules is an effective way to assess their health status and reliability.Based on the IGBT aging experiment measurement,this paper constructs a two-dimensional IGBT state detection index including a saturation voltage drops(VCEs)and junction temperature.For the normalized data,this paper introduces a way of segmented processing method to remove the large index fluctuation caused by the break of the IGBT bond wire.Based on VCEs and junction temperature data,the prediction model of neural network-based IGBT module remaining service life is proposed in this paper.The accuracy of the proposed neural network model in the prediction of remaining life is analyzed for the same sample with different channels and different experimental conditions.
作者
郭子庆
王学华
Guo Ziqing;Wang Xuehua(School of Electrical and Electronic Engineering,Huazhong University of Science and Technology,Wuhan 430074,China)
出处
《电测与仪表》
北大核心
2023年第1期132-138,共7页
Electrical Measurement & Instrumentation
基金
国家重点研发计划项目(2018YFB0905705)。
关键词
IGBT模块寿命预测
老化机理
分段拟合
神经网络
useful life prediction of IGBT module
separation of data based on ageing mechanism
piecewise fitting
neural network