摘要
研究基于两类非标准Lagrange函数(指数Lagrange函数和幂律Lagrange函数)的分数阶Lagrange系统的Noether对称性与守恒量.首先,分别导出Caputo分数阶导数下两类非标准Lagrange系统的运动微分方程;其次,根据作用量在无穷小变换下的不变性,给出了分数阶非标准Lagrange系统的Noether对称变换的定义和判据;最后,建立系统的Noether定理并举例说明结果的应用.
The Noether symmetry and conserved quantities of fractional Lagrange systems based on two kinds of non-standard Lagrangians(i.e.,exponential Lagrangian and power-law Lagrangian)are studied.Firstly,the differential equations of motion for two kinds of non-standard Lagrange systems with Caputo fractional derivatives are derived respectively.Secondly,according to the invariance of the action under the infinitesimal transformations,the definitions and criterions of Noether symmetric transformations for fractional non-standard Lagrange systems are given.Finally,Noether’s theorems are established and two examples are given to illustrate the application of the results.
作者
张林洁
张毅
ZHANG Lin-jie;ZHANG Yi(School of Mathematical Sciences,Suzhou University of Science and Technology,Suzhou 215009,Jiangsu,China;College of Civil Engineering,Suzhou University of Science and Technology,Suzhou 215011,Jiangsu,China)
出处
《云南大学学报(自然科学版)》
CAS
CSCD
北大核心
2023年第1期82-90,共9页
Journal of Yunnan University(Natural Sciences Edition)
基金
国家自然科学基金(11972241,11572212,11272227)
江苏省自然科学基金(BK20191454)。