期刊文献+

Realizing high thermoelectric performance of Cu and Ce co-doped p-type polycrystalline SnSe via inducing nanoprecipitation arrays 被引量:3

原文传递
导出
摘要 Thermoelectric(TE)performance of polycrystalline stannous selenide(SnSe)has been remarkably promoted by the strategies of energy band,defect engineering,etc.However,due to the intrinsic insufficiencies of phonon scattering and carrier concentration,it is hard to simultaneously realize the regulations of electrical and thermal transport properties by one simple approach.Herein,we develop Cu and Ce co-doping strategy that can not only greatly reduce lattice thermal conductivity but also improve the electrical transport properties.In this strategy,the incorporated Cu and Ce atoms could induce high-density SnSe_(2) nanoprecipitation arrays on the surface of SnSe microplate,and produce dopant atom point defects and dislocations in its interior,which form multi-scale phonon scattering synergy,thereby presenting an ultralow thermal conductivity of 0.275 W·m^(−1)·K^(−1) at 786 K.Meanwhile,density functional theory(DFT)calculations,carrier concentration,and mobility testing reveal that more extra hole carriers and lower conducting carrier scattering generate after Cu and Ce co-doping,thereby improving the electrical conductivity.The co-doped Sn_(0.98)Cu_(0.01)Ce_(0.01)Se bulk exhibits an excellent ZT value up to~1.2 at 786 K and a high average ZT value of 0.67 from 300 to 786 K.This work provides a simple and convenient strategy of enhancing the TE performance of polycrystalline SnSe.
出处 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第11期1671-1686,共16页 先进陶瓷(英文)
基金 support of the National Natural Science Foundation of China(Grant Nos.51702193 and 51502165) the Natural Science Basic Research Program of Shaanxi(Grant No.2022JM-202) the Shaanxi Provincial Education Department Serves Local Scientific Research Plan(Grant No.20JC008) the General Project in Industrial Area of Shaanxi Province(Grant No.2020GY281) the Natural Science Foundation of Shaanxi Provincial Department of Education(Grant No.20JK0525) the Scientific Research Fund of Shaanxi University of Science&Technology(Grant Nos.BJ16-20 and BJ16-21).
  • 相关文献

同被引文献32

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部