期刊文献+

Evaluating the Potentials of PLSR and SVR Models for Soil Properties Prediction Using Field Imaging,Laboratory VNIR Spectroscopy and Their Combination

下载PDF
导出
摘要 Pedo-spectroscopy has the potential to provide valuable information about soil physical,chemical,and biological properties.Nowadays,wemay predict soil properties usingVNIRfield imaging spectra(IS)such as Prisma satellite data or laboratory spectra(LS).The primary goal of this study is to investigate machine learning models namely Partial Least Squares Regression(PLSR)and Support Vector Regression(SVR)for the prediction of several soil properties,including clay,sand,silt,organic matter,nitrate NO3-,and calcium carbonate CaCO_(3),using five VNIR spectra dataset combinations(%IS,%LS)as follows:C1(0%IS,100%LS),C2(20%IS,80%LS),C3(50%IS,50%LS),C4(80%IS,20%LS)and C5(100%IS,0%LS).Soil samples were collected at bare soils and at the upper(0–30 cm)layer.The data set has been split into a training dataset 80%of the collected data(n=248)and a validation dataset 20%of the collected data(n=61).The proposed PLSR and SVR models were trained then tested for each dataset combination.According to our results,SVR outperforms PLSR for both:C1(0%IS,100%LS)and C5(100%IS,0%LS).For Soil Organic Matter(SOM)prediction,it achieves(R^(2)=0.79%,RMSE=1.42%)and(R^(2)=0.76%,RMSE=1.3%),respectively.The data fusion has improved the soil property prediction.The highest improvement was obtained for the SOM property(R^(2)=0.80%,RMSE=1.39)when using the SVR model and applying the second Combination C2(20% of IS and 80%LS).
出处 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1399-1425,共27页 工程与科学中的计算机建模(英文)
基金 supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R196),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部