摘要
研究了含参广义向量拟变分不等式问题解映射的上半连续性。在约束集K和集值映射T分别受参数扰动的情况下,通过KKM映射和间隙函数建立了含参广义向量拟变分不等式问题解映射的上半连续性结果,并通过例子进行了验证。
Studies the upper semicontionuity of solution mapping to parametric generalized vector quasi-variational inequality problem.where the constraint set K and a set-valued mapping T are perturbed by different parameters,by virtue of the KKM mapping and gap function,established the results of upper semicontionuity of solution mapping to parametric generalized vector quasi-variational inequality problem,and by example verified the conclusion.
作者
陈小龙
吴慧凌
Chen Xiaolong;Wu Huiling(College of Mathematics and Statistics,Chongqing Jiaotong University,Chongqing,China)
出处
《科学技术创新》
2023年第4期23-26,共4页
Scientific and Technological Innovation
关键词
上半连续性
KKM映射
间隙函数
含参广义向量拟变分不等式
upper semicontinuity
KKM mapping
gap function
parametric generalized vector quasi-variational inequality