摘要
Real-time simulation of large-scale wind farms with detailed modeling can provide accurate insights into system transient behaviors,but entails challenges in computing resources.This paper develops a compact real-time simulator based on the field programmable gate array(FPGA)for large-scale wind farms,in which the spatial-temporal parallel design method is proposed to address the huge computation resource demand associated with detailed modeling.The wind farm is decoupled into several subsystems based on model consistency,and the electrical system and control system of each subsystem are solved in parallel.Both the module-level pipeline technique and superscalar pipeline technique are introduced to the wind farms’simulation to effectively improve the utilization of hardware resources.In case studies,real-time simulations of two modified wind farms are separately carried out on a single FPGA,including one with 13 permanent magnet synchronous generators under a time-step of 11µs,and the other with 30 squirrel-cage induction generators under a time-step of 8µs.Simulation tests,under different scenarios,are implemented to validate the numerical performance of the real-time simulator,and a comparison with the commercial tool PSCAD/EMTDC demonstrates the accuracy and effectiveness of the proposed design.
基金
This work was supported by the National Natural Science Foundation of China under Grant No.U1866207,No.51807131
No.51961135101
the Swedish Research Council under Grant No.2018-06007。