期刊文献+

面向目标6DoF姿态与尺寸估计的全卷积神经网络模型 被引量:2

Full convolution neural network model for 6DoF attitude and size estimation
下载PDF
导出
摘要 针对6DoF姿态估计需要收集与标注大量数据训练神经网络提出一种小数据集下面向目标6DoF姿态与尺寸估计的全卷积神经网络模型以降低人工操作成本。首先采用注意力机制与特征金字塔相结合的方式通过区域建议网络提取感兴趣区域,将该区域输入并行融合全卷积网络获得掩膜图;其次通过增加跳跃连接丰富每个卷积后的特征信息,将其融合并通过分类获得预测标准化坐标空间图;最后将得到的掩膜图与标准化坐标空间图通过三维点云配准获得目标的6DoF姿态与尺寸。实验表明,该方法在小数据集下较PVN3D方法精度提升约2.6%,较GPVPose方法精度提升约1%。 In order to reduce the cost of manual operation, this paper proposed a fully convolutional neural network model for 6DoF pose and size estimation of targets with small data sets for 6DoF pose and size estimation that required collecting and labeling a large amount of data to train neural networks.Firstly, it combined the attention mechanism with the feature pyramid to extract the region of interest through the region suggestion network, and the region was input into the parallel fusion full convolution network to obtain the mask map.Secondly, it enriched the feature information after each convolution by adding jump connections, which were fused and classified to obtain the predicted normalization coordinate space map.Finally, it obtained the 6DoF pose and size of the target by 3D point cloud registration between the obtained mask image and the normalization coordinate space image.Experiments show that compared with PVN3D method, this method improves the accuracy by about 2.6% and GPVPose method by about 1% in small data sets.
作者 刘泽洋 贾迪 Liu Zeyang;Jia Di(School of Electronic&Information Engineering,Liaoning Technical University,Huludao Liaoning 125100,China;School of Electrical Appliances&Control Engineering,Liaoning Technical University,Huludao Liaoning 125100,China)
出处 《计算机应用研究》 CSCD 北大核心 2023年第3期938-942,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61601213) 辽宁省教育厅资助项目(LJ2020FWL004,2019-ZD-0038)。
关键词 6DoF姿态估计 注意力机制 全卷积神经网络 三维点云 6DoF attitude estimation attention mechanism full convolutional neural network 3D point cloud
  • 相关文献

参考文献1

二级参考文献4

共引文献28

同被引文献20

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部