摘要
Dry storage containers must be secured and reliable during long-term storage,and the effect of decay heat released from the internal spent fuel on the cask has become an important research topic.In this paper,a 3D computational fluid dynamics model is presented,and the accuracy of the calculation is verified,with computational errors of less than 6.2%.The thermal stress of the dry storage cask was estimated by coupling it with a transient temperature field.The total power remained constant and adjusting the power ratio of the inner and outer zones had a small effect on the stress results,with a maximum equivalent stress of approximately 5.2 kPa,which occurred at the lower edge of the shell.In the case of tilt,the temperature gradient varied in a wavy distribution,and the wave crest moved from right to left.Altering the tilt angle affects the air distribution in the annular gap,leading to the shell temperature being transformed,with a maximum equivalent stress of 202 MPa at the bottom of the shell.However,the equivalent stress in both cases was less than the yield stress(205 MPa).
基金
the High-Performance Computing Center of Nanjing Tech University for supporting the computational resources