期刊文献+

基于BiLSTM-Attention的房颤的检测模型 被引量:1

Bidirectional LSTM with Attention Mechanism for Detection of Atrial Fibrillation
下载PDF
导出
摘要 心房颤动(Atrial Fibrillation,AF)是一种常见的心律失常疾病,会严重影响患者的日常生活,甚至引发包括中风、血栓堵塞等的并发症。因此,对房颤早期准确的诊疗非常重要。但是,算法对大规模的心率数据运行效率较低,因此房颤的诊断仍面临一定的挑战。针对上述挑战,文章提出了一种新型的基于深度学习的房颤检测架构BiLSTM-Attention。该架构包含双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)和Attention机制。在BiLSTM-Attention中,BiLSTM用于访问心率序列中的前项和后项数据,Attention机制用于给数据特征分配不同的权重,最终通过顶部全连接层分类房颤。在MIT-BIHAF数据库上对该架构进行了交叉验证,取得了98.54%的准确率。实验结果表明,BiLSTM-Attention架构在测试数据集上表现良好,为进一步探索智慧医疗迈出了坚实的一步。 Atrial fibrillation(AF) is a common disease of cardiac arrhythmia, which seriously affects daily life of patients.and may leads to other complications, such as stroke and thrombosis. Therefore, accurate and early diagnosis and treatment of AF is significant. However, due to the low efficiency of the algorithm for large-scale heart rate data, AF diagnosis faces difficult challenges. Therefore, this paper proposes a new architecture for AF detection based on deep learning, BiLSTM-Attention including Bi-bidirectional Long and Short Term Memory(BiLSTM) network and Attention mechanism. In BiLSTM-Attention,BiLSTM is used to access both the preceding and succeeding data in the heart rate sequence. The Attention mechanism is used to assign different weights to the data features. Finally, AF classification is carried out through the top full connection layer.Experiment was conducted on MIT-BIH AF database, and the architecture was cross-verified, and the accuracy was 98.54%,respectively. The experimental results show that the BiLSTM-Attention architecture performs well in the test data set, which makes a solid step for the further exploration of intelligent medical treatment.
作者 杨秋澍 YANG Qiushu(Zhejiang Institute of Economics and Trade,Hangzhou Zhejiang 310000,China)
出处 《信息与电脑》 2023年第1期131-133,共3页 Information & Computer
关键词 心房颤动(AF) 心率 深度学习 双向长短期记忆网络(LSTM) Attention机制 Atrial Fibrillation(AF) heart rate recurrent neural network Bi-directional Long Short-Term Memory(BiLSTM) Attention mechanism
  • 相关文献

参考文献6

二级参考文献49

  • 1康重庆,夏清,张伯明.电力系统负荷预测研究综述与发展方向的探讨[J].电力系统自动化,2004,28(17):1-11. 被引量:499
  • 2李炎,翟永杰,周倩,韩璞.基于EUNITE竞赛数据的中期电力负荷预测[J].华北电力大学学报(自然科学版),2007,34(4):22-26. 被引量:6
  • 3Hayn D, Edegger K, Scherr D, et al. Automated prediction of spontaneous termination of atrial fibrillation from electrocardiograms [ C ] //Murray A, eds. Computers in Cardiology. Chicago: IEEE Computer Society, 2004:117 - 120.
  • 4Nilsson F, Stridh M, Bollmann A, et al. Predicting spontaneous termination of atrial fibrillation with time - frequency information [ C ] // Murray A, eds. Computers in Cardiology. Chicago: IEEE Computer Society, 2004 : 657 -660.
  • 5Saberi S, Esmaeili V, Towhidkhah F, et al. Predicting Atrial Fibrillation termination using ECG features, a compnrison [ C ] // Frattasi S, eds. First International Symposium on Applied Sciences on Biomedical and Communication Technologies. Aalborg: IEEE , 2008:1 -4.
  • 6Petrutiu S, Sahakian AV, Swiryn S. Abrupt changes in fibrillatory wave charactedstics at the termination of paroxysmal atrial fibrillation in humans [ J ]. Europace, 2007,9 (7) :466 - 470.
  • 7Lemay M, Ihara Z, Vesin JM, et al. Computers in cardiology/ physionet challenge 2004: AF classification based on clinical features [ C ] // Murray A, eds. Computers in Cardiology. Chicago: IEEE Computer Society, 2004 : 669 - 672.
  • 8Mora C, Castells J, Ruiz R, et al. Prediction of spontaneous termination of atrial fibrillation using time frequency analysis of the atrial fibrillatory wave [ C] //Murray A, eds. Computers in Cardiology. Chicago: IEEE Computer Society, 2004: 109- 112.
  • 9Petrutiu S, Sahakian AV, Ng J, et al. Analysis of the surface electrocardiogram to predict termination of atrial fibrillation [ C ] //Murray A, eds. Computers in Cardiology. Chicago: IEEE Computer Society, 2004 : 105 - 108.
  • 10Roberts FM, Povinelli RJ. A statistical feature based approach to predicting termination of atrial fibrillation [ C ] //Murray A, eds. Computers in Cardiology. Chicago: IEEE Computer Society, 2004 : 673 -676.

共引文献1865

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部