期刊文献+

一种基于粒子滤波的双目视觉惯导SLAM技术

A visual inertial SLAM technology based on particle filter
下载PDF
导出
摘要 针对智能无人系统的定位与地图构建问题,提出一种基于粒子滤波的双目视觉惯导SLAM(即时定位与地图构建)方法。算法基于传统粒子滤波思想设计实现,后端处理时仅对位姿状态量进行滤波,有效解决了传统算法的维度爆炸问题,减少计算量的同时保证一定的精确度,兼顾SLAM算法精确性和即时性的要求。实验结果表明,方法整体定位精度相对误差低于5%,在光照条件适宜的小型场景效果更佳,误差低于3%,能够达到分米级精度,证明了SLAM方法能够完成SLAM系统的要求,实现即时定位与地图构建功能,具有一定的准确性、稳定性和鲁棒性。粒子滤波能够应用于视觉惯导SLAM领域并达到较高的精度要求。 Aiming at the problem of positioning and map construction in the intelligent unmanned system,a visual inertial SLAM method based on particle filter is proposed.This method is designed and implemented based on the traditional particle filter idea.In the back-end processing,only the pose state is filtered,which effectively solves the dimensional explosion problem of the traditional algorithm,reduces the amount of calculation while ensuring a certain degree of accuracy,and takes into account the accuracy and immediacy requirements of SLAM.The experimental results show that the relative error of the overall positioning accuracy of this method is less than 5%,and the effect is better in small scenes with suitable lighting conditions,which can achieve decimeterlevel accuracy.It is proved that the SLAM method can fulfill the requirements of SLAM,realize the functions of simultaneous localization and mapping.The method has certain accuracy,stability and robustness.Particle filtering can be applied to the field of visual inertial SLAM and achieve higher accuracy requirements.
作者 张振海 周伟 何光 邓宏彬 朱炜 康晓 张振山 ZHANG Zhenhai;ZHOU Wei;HE Guang;DENG Hongbin;ZHU Wei;KANG Xiao;ZHANG Zhenshan(Beijing Institute of Technology,Beijing 100081,China;China North Vehicle Research Institute,Beijing 100072,China;Beijing High-tech Micro&Nano Technology Development Co.,Ltd,Beijing 102200,China)
出处 《遥测遥控》 2023年第2期18-26,共9页 Journal of Telemetry,Tracking and Command
基金 科工局国防技术基础项目资助(202020230028) 装备预先研究背景项目资助(ZW040202)。
关键词 粒子滤波 视觉惯导定位 双目立体视觉 即时定位与地图构建 后端优化 Particle filter Visual-inertial Stereo visual SLAM Back-end optimization
  • 相关文献

参考文献8

二级参考文献95

  • 1刘威,赵文杰,李成,徐忠林,李婷.粒子滤波理论框架及在目标跟踪中的应用[J].自动化与仪器仪表,2016(3):190-191. 被引量:2
  • 2杨小军,潘泉,王睿,张洪才.粒子滤波进展与展望[J].控制理论与应用,2006,23(2):261-267. 被引量:74
  • 3方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 4万莉,刘焰春,皮亦鸣.EKF、UKF、PF目标跟踪性能的比较[J].雷达科学与技术,2007,5(1):13-16. 被引量:40
  • 5Durrant-Whyte H, Majumder S, Thrun S, et al. A Bayesian algorithm for simultaneous localization and map building[ A]. proceedings of the 10th International Symposium of Robotics Research[ C]. Berlin, Germany: Springer, 2003. 49 - 66.
  • 6Thrun S, Burgard W, Fox D. A probabilistic approach to concurrent mapping and localization for mobile robots[J]. Machine Learning, 1998, 31(1-3): 29-53.
  • 7Smith R, Self M, Chesseman P. Estimating uncertain spatial relationships in robotics [ A ]. Proceedings of the IEEE International Conference on Robotics and Automation [ C ]. Piscataway, N J, USA: IEEE, 1987. 850.
  • 8Smith R C, Cheeseman P. On the representation and estimation of spatial uncertainty [ J ]. The International Journal of Robotics Research, 1986, 5(4) : 56 -68.
  • 9Csorba M. Simultaneous Localization and Map Building[ D]. Oxford: University of Oxford, 1997.
  • 10Dissanayake M W M G, Newman P, Clark S, et al. A solution to the simultaneous localization and map building (SLAM) problem [J]. IEEE Transactions on Robotics and Automation, 2001, 17 (3) : 229 -241.

共引文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部