摘要
Strainbursts induced by cyclic disturbance with low frequency(termed as cyclicinduced strainbursts)are major dynamic disasters during deep excavation and mining.There is currently no quantitative criterion available for the prediction of such disastrous events.In this study,based on true triaxial experiments,we analyzed the deformation characteristics,established two novel strain criteria for the cyclic-induced strainbursts,and explained the physical meaning of these criteria.Characteristic strains for the cyclic-induced strainbursts were defined,including the control strain ε_(ctr),the strain caused by the combined dynamic and static loading ε_(sd),and the ultimate strain ε_(u) after strainbursts.As indicated by the results,the deformation evolution of the cyclic-induced strainbursts shows remarkable fatigue characteristics,which resemble that of rock subjected to cyclic loading and unloading.In other words,there are three stages during deformation evolution,namely,initial rapid growth,uniform velocity growth after several periods of disturbance,and sudden sharp growth preceding the burst.The ultimate strain ε_(u) is insensitive to the tangential static stress and disturbance amplitude,but it changes nonlinearly with disturbance frequency.From the perspective of deformation,the occurrence of a cyclic-induced strainburst is controlled by the control strainε_(ctr).Thus,a control strain criterion is proposed;that is,when the stain ε_(sd) is larger than the control strain ε_(ctr),a strainburst will be induced by cyclic disturbance.Moreover,based on the statistical results,a strain ratio criterion is proposed;that is,when the strain ratio ε_(sd)/ε_(u) is greater than 30%,a cyclic-induced strainburst will be induced.
基金
Fundamental Research Funds for the Central Universities,Grant/Award Number:2022QN1032。