期刊文献+

DCE-MRI预测肺腺癌侵袭性的临床应用研究

下载PDF
导出
摘要 目的:探讨动态增强磁共振成像(dynamic enhanced magnetic resonance imaging,DCE-MRI)定量分析参数值对术前预测肺腺癌分化程度、淋巴结转移和胸膜侵犯的价值。方法:收集病理证实为肺腺癌患者36例,术前行3.0 T MRI常规平扫、DWI及动态对比增强扫描。将数据导入后处理分析软件Omni Kinetics Manual,测量病灶感兴趣区域的参数值:转运常数(transfer constant,K^(trans))、血管外细胞外体积分数(extracelluler space volume,V_(e))、反转运数率常数(rate constant,K_(ep))、血浆容积分数(blood plasma volume,V_(p))。测量者间一致性用组内相关系数(intraclass coefficient,ICC)评价。采用单因素方差分析比较各参数值在不同分化程度之间的差异,Spearman相关性分析探讨各参数值与分化程度之间的关系,运用独立样本t检验(正态分布)比较各参数值在有无淋巴结转移、有无胸膜侵犯组中的差异。通过ROC曲线分析,寻求预测肺腺癌分化程度、淋巴结转移、胸膜转移的最佳参数和最佳阈值。结果:各参数值的测量一致性较好,除了V_(p)(ICC<0.75)外,K^(trans)、V_(e)值在低分化腺癌中显著高于中、高分化腺癌组(P<0.05);K^(trans)、V_(e)与分化程度呈负相关(r=-0.497、-0.432,P<0.01);有淋巴结转移组的K^(trans)明显高于于无淋巴结转移组(t=2.815,P=0.008);有胸膜侵犯组K^(trans)、K_(ep)明显高于无胸膜侵犯组(t=3.186、2.270,P=0.024、0.018)。K^(trans)值预测肺腺癌分化程度的AUC为0.789,敏感度81.2%,特异度72.0%;K^(trans)值预测肺腺癌淋巴结转移的AUC为0.751,敏感度76.9%,特异度73.9%;K_(ep)预测肺腺癌胸膜侵犯的AUC为0.781,敏感度75.0%,特异度78.5%。结论:DCE-MRI定量参数可在术前预测肺腺癌的侵袭性,术前K^(trans)值可预测肺腺癌分化程度及淋巴结转移,K_(ep)能预测是否存在胸膜侵犯。
出处 《南通大学学报(医学版)》 2023年第1期89-92,共4页 Journal of Nantong University(Medical sciences)
  • 相关文献

参考文献8

二级参考文献66

  • 1孙应实,张晓鹏,唐磊.直肠癌扩散加权成像b值选取及其对直肠癌显示能力的评价[J].中国医学影像技术,2005,21(12):1839-1843. 被引量:44
  • 2齐丽萍,张晓鹏,唐磊,孙应实,汪宁.扩散加权成像用于中央型肺癌与肺不张鉴别的初步研究[J].中国医学影像技术,2007,23(10):1486-1490. 被引量:29
  • 3Schwartzbaum JA, Fisher JL, Aldape KD, et al. Epidemiology and molecular pathology of glioma[J].Nat Clin Pract Neurol, 2006, 2(9):494-503.
  • 4Provenzale JM, Mukundan S, Dewhirst M. The role of blood-brain barrier permeability in brain tumor imaging and therapeutics[J].AJR Am J Roentgenol, 2005, 185(3):763-767.
  • 5Heye AK,Culling RD,Vald6s HernOndez Mdel C, et al. Assessment of blood-brain barrier disruption using dynamic contrast-enhanced MRI. A systematic review. Neuroimage Clin, 2014,6:262-274.
  • 6Zhang N, Zhang L, Qiu B, et al. Correlation of volume transfer coefficient Ktrans with histopathologic grades of gliomas[J].J Magn Reson Imaging, 2012, 36(2):355-363.
  • 7Nguyen TB, Cron GO, Mercier JF, et al. Diagnostic accuracy of dynamic contrast-enhanced MR_ imaging using a phase-derived vascular input function in the preoperativegrading of gliomas[J].AJNR Am J Neuroradiol, 2012, 33(8): 1539-1545.
  • 8Larsson HB, Stubgaard M, Frederiksen JL, et al. Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors[J]. Magn Reson Med, 1990, 16( 1 ): 117 - 131.
  • 9Torts PS, Kermode AG. Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. fundamental concepts[J].Magn Reson Med, 1991, 17(2):357-367.
  • 10Brix G, Semmler W, Port R, et al. Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging[J].J Comput Assist Tomogr, 1991, 15(4):621-628.

共引文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部