摘要
High cost has undoubtedly become the biggest obstacle to the commercialization of proton exchange membrane fuel cells(PEMFCs),in which Pt-based catalysts employed in the cathodic catalyst layer(CCL)account for the major portion of the cost.Although nonprecious metal catalysts(NPMCs)show appreciable activity and stability in the oxygen reduction reaction(ORR),the performance of fuel cells based on NPMCs remains unsatisfactory compared to those using Pt-based CCL.Therefore,most studies on NPMC-based fuel cells focus on developing highly active catalysts rather than facilitating oxygen transport.In this work,the oxygen transport behavior in CCLs based on highly active Fe-N-C catalysts is comprehensively explored through the elaborate design of two types of membrane electrode structures,one containing low-Pt-based CCL and NPMCbased dummy catalyst layer(DCL)and the other containing only the NPMC-based CCL.Using Zn-N-C based DCLs of different thickness,the bulk oxygen transport resistance at the unit thickness in NPMC-based CCL was quantified via the limiting current method combined with linear fitting analysis.Then,the local and bulk resistances in NPMC-based CCLs were quantified via the limiting current method and scanning electron microscopy,respectively.Results show that the ratios of local and bulk oxygen transport resistances in NPMCbased CCL are 80%and 20%,respectively,and that an enhancement of local oxygen transport is critical to greatly improve the performance of NPMC-based PEMFCs.Furthermore,the activity of active sites per unit in NPMCbased CCLs was determined to be lower than that in the Pt-based CCL,thus explaining worse cell performance of NPMC-based membrane electrode assemblys(MEAs).It is believed that the development of NPMC-based PEMFCs should proceed not only through the design of catalysts with higher activity but also through the improvement of oxygen transport in the CCL.
基金
the National Key R&D Program of China(Grant No.2021YFB4001303)
the National Natural Science Foundation of China(Grant No.21975157)。