摘要
以自由燃烧的Keyhole-TIG电弧为研究对象,建立了统一电弧-钨极-阳极的二维轴对称模型。采用Fluent软件对焊接电流为520 A的稳态Keyhole-TIG电弧进行了模拟,以获得电弧的温度、速度、压强和电流密度等物理量及其分布。结果表明:钨极下方电弧的最高温度达36000 K;电弧出现强烈的阴极喷射,高速等离子体产生的动压力是形成小孔的主要原因;由于小孔的泄压作用,阳极表面附近未形成明显的高压区;大部分电流从阳极工件上表面流入钨极,仅19%的电流从小孔中进入;电弧传入小孔的热量占总热量的17%,剩余热量通过阳极上表面进入。
Taking the free-burning Keyhole-TIG arc as a research object,a two-dimensional axisymmetric model unifying arc-tungsten-anode was established.The steady-state Keyhole-TIG arc with a welding current of 520 A was simulated by a Fluent software to obtain physical variables such as temperature,speed,pressure,and current density of the arc and their distribution.The results showed that(a)the maximum temperature of the arc under the tungsten electrode was up to 36000 K;(b)the arc exhibited a strong cathode jet,and the formation of keyholes was traced largely to dynamic pressure generated by the high-speed plasma;(c)no obvious high-pressure area formed near the anode surface because the keyhole acted as pressure relief;(d)most of the current flowed from the upper surface of the anode workpiece to the tungsten electrode,and as little as 19%of the current entered through the keyholes;and(e)the heat the arc transferred into the keyhole accounted for 17%of the total heat,and the remainder entered through the upper surface of anode.
作者
张凌峰
王飞
刘红兵
杨坡
王基尧
张天理
刘晓丽
于治水
李桓
Cressault Yann
ZHANG Lingfeng;WANG Fei;LIU Hongbing;YANG Po;WANG Jiyao;ZHANG Tianli;LIU Xiaoli;YU Zhishui;LI Huan;Cressault Yann(School of Materials Science and Engineering,Shanghai University of Engineering Science,Shanghai 201620,China;Shanghai Collaborative Innovation Center of Laser Advanced Manufacturing Technology,Shanghai University of Engineering Science,Shanghai 201620,China;Shanghai Duomu Industry Co.,Ltd.,Shanghai 201812,China;Hebei Special Equipment Supervision and Inspection Institute,Shijiazhuang 050200,Hebei China;School of Material Science and Engineering,Tianjin University,Tianjin 300072,China;Laboratoire Plasmaet Conversion d'Energie(LAPLACE),Universite Toulouse III-Paul Sabatier,Toulouse F-31062,France)
出处
《热处理》
CAS
2023年第2期35-40,49,共7页
Heat Treatment
基金
国家自然科学基金(52005320)
江苏省科技成果转化专项资金项目(BA2020068)
浙江省重点研发计划资助项目(2021C01085)
宁波市北仑区重点技术研究项目(2021BLG005)。