期刊文献+

实体关系抽取综述

Survey of Entity Relationship Extraction
下载PDF
导出
摘要 作为信息抽取的核心任务,关系抽取能够从大量的无规则信息中抽取关系三元组,为知识图谱、问答系统等提供知识来源。首先简要介绍关系抽取的发展历程,重点阐述主流的关系抽取方法及模型,并对各种关系抽取技术进行分析。最后,对关系抽取的未来发展领域和方向进行了总结和展望。 As the core task of information extraction,relationship extraction can extract relational triples from a large number of irregular information,and provide knowledge sources for knowledge graphs and question answering systems.Firstly,the development process of relational extraction technology is briefly introduced,focusing on the mainstream relationship extraction methods and models,and various relationship extraction techniques are analyzed.Finally,the future development areas and directions of relationship extraction are summarized and prospected.
作者 乔文捷 QIAO Wenjie(School of Information Science and Engineering,Southeast UniversityjNanjing China,210096)
出处 《长江信息通信》 2023年第4期99-101,共3页 Changjiang Information & Communications
关键词 实体关系抽取 有监督方法 机器学习 深度学习 entity relation extraction supervised method machine learning deep learning
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部