摘要
提出一种基于自适应变分模态分解(Variational Mode Decomposition,VMD)与广义回归神经网络(Generalized Regression Neural Network,GRNN)的故障诊断方法,有效解决转子系统振动信号特征提取与复合故障模式识别的问题。首先通过VMD将采集到的原始信号自适应分解为一系列的内涵模态分量(Intrinsic Mode Functions,IMF),然后根据相关系数-峭度准则选取IMF分量进行信号重构。最后获取重构信号的精细复合多尺度散布熵(Refined Composite Multiscale Dispersion Entropy,RCMDE)、均方根以及重心频率构成特征向量集,输入到GRNN神经网络进行训练和故障模式识别。数值仿真与故障模拟实验结果表明:采用基于自适应VMD与GRNN神经网络的方法可有效识别转子系统中的多故障模式。
A fault diagnosis method based on adaptive variational mode decomposition(VMD)and general regression neural network(GRNN)is proposed,which can effectively solve the problems of feature extraction and compound fault pattern recognition of rotor system vibration signals.Firstly,the original signal is adaptively decomposed into a series of intrinsic mode functions(IMF)components by VMD.Then,the IMF components are selected for signal reconstruction according to the correlation coefficient-kurtosis criterion.Finally,the refined composite multiscale dispersion entropy(RCMDE),mean square root and barycenter frequency of the reconstructed signal are calculated to form a feature vector set,which is then input to GRNN mode for training and fault pattern recognition.The results of numerical simulation and fault simulation experiments show that the method based on adaptive VMD and GRNN neural network can effectively identify multi-fault modes in rotor systems.
作者
别锋锋
张莹
吴溢凡
彭剑
朱鸿飞
BIE Fengfeng;ZHANG Ying;WU Yifan;PENG Jian;ZHU Hongfei(School of Mechanical Engineering and Rail Transit,Changzhou University,Changzhou 213164,Jiangsu,China;Jiangsu Key Laboratory of Green Process Equipment,Changzhou University,Changzhou 213164,Jiangsu,China)
出处
《噪声与振动控制》
CSCD
北大核心
2023年第3期83-89,共7页
Noise and Vibration Control
基金
国家自然科学基金资助项目(52075050)
江苏省教育厅自然科学重大资助项目(19KJA430004)
江苏省研究生科研创新计划资助项目(KYCX21_2810)
江苏省研究生实践创新资助项目(SJCX20_1006)。