期刊文献+

重心纵向位置对滑行艇阻力性能的影响研究

LCG Effects on Resistance Performance of a Planing Hull in Calm Water
下载PDF
导出
摘要 高速滑行艇姿态和阻力的准确预测对于提高船舶水动力性能具有重要意义。为了研究重心纵向位置对滑行艇阻力和水动力性能的影响,验证CFD方法的适用性,本文采用动态重叠网格方法进行CFD数值模拟,采用有限体积法求解湍流模型为SST k-ω的雷诺平均方程,水气两相流的自由界面采用VOF方法捕获,给出并分析了不同速度下三个不同重心纵向位置的结果比较。不同重心纵向位置情况下的数值结果比较表明:下沉和纵倾角随XCG的减小而增加,同时导致润湿面积减少;当重心纵向位置向后移动时,水动升力使滑行艇更容易进入滑行状态。 The accurate prediction of attitudes and resistance of high-speed planing hulls is signifi⁃cant for the improvement of ship hydrodynamics.To investigate the effects of XCG(longitudinal center of gravity)on the resistance performance of a planing hull and verify the applicability of the CFD meth⁃od,the CFD simulation with the dynamic overset mesh method was carried out.The finite volume method(FVM)was adopted to solve the Reynolds-Averaged Navier-Stokes(RANS)equation incorpo⁃rated with the SST k-ωturbulence model in the current numerical simulation.And the interface of a two-phase flow was captured by the volume of fluid(VOF)scheme.The details of the comparative ef⁃fect of three different XCG positions were given and analyzed at various speeds.According to the pres⁃ent studies,the comparison of numerical results with different XCG cases illustrates that the sinkage and trim angle increase with decreasing XCG,causing a decrease in the wetted area simultaneously.When the position of XCG moves backward,the hydrodynamic lift force makes the planing hull easier to enter the planing region.
作者 王慧 朱仁传 徐德康 李超凡 WANG Hui;ZHU Ren-chuan;XU De-kang;LI Chao-fan(State Key Laboratory of Ocean Engineering,School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
出处 《船舶力学》 EI CSCD 北大核心 2023年第6期803-815,共13页 Journal of Ship Mechanics
基金 国家自然科学基金联合基金项目“叶企孙”科学基金(U2141228)。
关键词 滑行艇 重叠网格方法 重心纵向位置 压力分布 升力 planing hull overset mesh method longitudinal center of gravity pressure distribution lift force
  • 相关文献

参考文献3

二级参考文献17

  • 1LIU Qian, PANG Li-guo and LEI Yun-hong. Research on the theory and technical characters of wave-absor- bing planing trimaran[J]. Jiangsn Ship, 2000, 17(1): 6- 7(in Chinese).
  • 2SUN Hua-wei. Research on the hull form and resistance performance of trimaran planing hull[D]. Master Thesis, Harbin, China: Harbin Engineering University, 2010(in Chinese).
  • 3SUN Hua-wei, ZOU Jin and HUANG De-bo et al. Ex- perimental investigation on resistances from stepped tri- maran-planing boats[J]. Journal of Huazhong Univer- sity of Science and Technology (Natural Science Edi- tion), 2012, 40(1): 86-89(in Chinese).
  • 4WANG Qing-xu. Research on the resistance and stabili- ty of trimaran planing hull[D]. Master Thesis, Harbin, China: Harbin Engineering University, 2012(in Chinese).
  • 5AZCUETA R. Computation of turbulent free-surface flows around ships and floating bodies[D]. Doctoral Thesis, Hamburg, Germany: Technical University Hamburg-Harburg, 2001, 61-89.
  • 6AZCUETA R. RANSE simulations for sailing yachts including dynamic sinkage and trim and unsteady mo- tion in waves[C]. High Performance Yacht Design Conference. Auckland, New Zealand, 2002, 25-32.
  • 7KATAYAMA T., IKEDA Y. Acceleration performance of high-speed planing craft from rest[J]. Journal of the Society of Naval Architects of Japan, 1999, 185: 81- 89.
  • 8KATAYAMA T., IKEDA Y. and OKUMURA H. A study on unstable motions of a planing craflin maneuve- ring-large amplitude motion due to periodic maneuve- ring motion[J]. Journal of the Society of Naval Archi- tects of Japan, 2000, 188: 155-162.
  • 9CHUNG Meng-Hsuan. Cartesian cut cell approach for simulating incompressible flows with rigid bodies of ar- bitrary shape[J]. Computers and Fluids, 2006, 35(6): 607-623.
  • 10RUFFIN S. M., ZAKI M. and SEKHAR S. A normal ray refinement technique for Cartesian-grid based Navier-Stokes solvers[J]. International Journal of Computational Fluid Dynamics, 2012, 26(4): 231- 246.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部