摘要
作为可捕获用户个性化信息的网络分析任务,社区搜索旨在挖掘满足内聚性要求的查询节点所在的社区。大多数现有社区搜索方法仅能定位查询节点所在的单尺度社区。据此,设计了一种基于谱图小波的多尺度社区搜索方法,利用谱图小波和局部模块度挖掘查询节点所在的多尺度社区。具体地,首先,构建模块度矩阵和拉普拉斯矩阵并进行矩阵分解得到相关特征向量;其次,结合谱图理论和图小波,设计了基于谱图小波的尺度依赖局部模块度;再次,以归一化拉普拉斯矩阵和局部模块度张成的特征空间为支撑,设计了线性规划问题,以求解在给定尺度下与查询相关的稀疏指示向量;最后,利用社区边界截断策略不断添加节点,使得局部模块度最大。人工网络和真实网络上的实验结果表明了方法的高效率和有效性。
As a network analysis task that can capture user’s personalized information,community search aims at mining the community of query nodes that can satisfy the cohesion requirement.Most of the existing community search methods can only locate a single-scale community where query nodes are located.A Multi-Scale Community Search method based on Spectral Wavelet(MSCS_SW)is proposed,which can mine the multi-scale community of query nodes by using spectral wavelet and local modularity.Specifically,firstly,the modularity matrix and the Laplacian are constructed,and decomposed to obtain the relevant eigenvectors.Secondly,based on the spectral theory and the graph wavelet,the scale-dependent local modularity is designed.Thirdly,based on the normalized Laplacian Matrix and the feature space of local modularity,a linear programming problem is designed to solve the sparse indicator vectors related to query at a given scale.Finally,the community boundary truncation strategy is used to add nodes to maximize the local modularity.Experimental results on synthetic network and real-world network datasets demonstrate the efficiency and effectiveness of the proposed method.
作者
闫彩瑞
马慧芳
李青青
YAN Cai-rui;MA Hui-fang;LI Qing-qing(College of Computer Science and Engineering,Northwest Normal University,Lanzhou 730070,China)
出处
《计算机工程与科学》
CSCD
北大核心
2023年第6期1106-1115,共10页
Computer Engineering & Science
基金
国家自然科学基金(61762078,61363058)
西北师范大学青年教师能力提升计划(NWNU-LKQN2019-2)
甘肃省自然科学基金(21JR7RA114)。
关键词
多尺度
社区搜索
谱
图小波
局部模块度
multi-scale
community search
spectral
graph wavelet
local modularity