期刊文献+

Human Gait Recognition Based on Sequential Deep Learning and Best Features Selection

下载PDF
导出
摘要 Gait recognition is an active research area that uses a walking theme to identify the subject correctly.Human Gait Recognition(HGR)is performed without any cooperation from the individual.However,in practice,it remains a challenging task under diverse walking sequences due to the covariant factors such as normal walking and walking with wearing a coat.Researchers,over the years,have worked on successfully identifying subjects using different techniques,but there is still room for improvement in accuracy due to these covariant factors.This paper proposes an automated model-free framework for human gait recognition in this article.There are a few critical steps in the proposed method.Firstly,optical flow-based motion region esti-mation and dynamic coordinates-based cropping are performed.The second step involves training a fine-tuned pre-trained MobileNetV2 model on both original and optical flow cropped frames;the training has been conducted using static hyperparameters.The third step proposed a fusion technique known as normal distribution serially fusion.In the fourth step,a better optimization algorithm is applied to select the best features,which are then classified using a Bi-Layered neural network.Three publicly available datasets,CASIA A,CASIA B,and CASIA C,were used in the experimental process and obtained average accuracies of 99.6%,91.6%,and 95.02%,respectively.The proposed framework has achieved improved accuracy compared to the other methods.
出处 《Computers, Materials & Continua》 SCIE EI 2023年第6期5123-5140,共18页 计算机、材料和连续体(英文)
基金 supported by“Human Resources Program in Energy Technology”of the Korea Institute of Energy Technology Evaluation and Planning(KETEP) granted financial resources from the Ministry of Trade,Industry&Energy,Republic of Korea.(No.20204010600090).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部