摘要
针对目前2种主流求解海上风电机组接地电阻值精度不足的问题,该文提出基于天鹰算法改进的回声状态网络(AOESN),对海上风电机组接地电阻进行预测分析。分别利用BP、ESN、AO-ESN这3种网络进行预测,结果表明:AO-ESN模型的预测精度相较于BP和ESN模型分别提高了18%和14.46%,误差低至0.54%,所搭建的模型可对海上风电机组接地电阻进行精准预测。
In response to the current two mainstream solution of offshore wind turbine with insufficient accuracy of ground resistance methods,in this paper,the improved Echo state network(AO-ESN)based on the Aquila optimizer is proposed to predict and analyze the grounding resistance of offshore wind turbines.The three networks of BP,ESN and AO-ESN are used to make predictions.The results show that the prediction accuracy of the AO-ESN prediction model is 18%and 14.46%higher than the BP and ESN models,and the error is as low as 0.54%.The model built in this paper can be accurately predict the grounding resistance of offshore wind turbines,and provide reference for transient analysis and lightning protection of offshore wind turbines.
作者
张萍
杨晓磊
张国峰
陈程
尹军杰
李练兵
Zhang Ping;Yang Xiaolei;Zhang Guofeng;Chen Cheng;Yin Junjie;Li Lianbing(Key Lab of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province(Hebei University of Technology),Tianjin 300130,China;Artificial Intelligence and Data Science of Hebei University of Technology,Tianjin 300130,China;Hebei Construction Investment Offshore Wind Power Co.,Ltd.,Tangshan 063000,China)
出处
《太阳能学报》
EI
CAS
CSCD
北大核心
2023年第5期480-486,共7页
Acta Energiae Solaris Sinica
基金
基于无线网络全覆盖的海上风电安全生产管理平台建设研究与应用(项目编号:XT-KJ-2021012)。
关键词
海上风电机组
预测
雷电
ESN
接地电阻
offshore wind turbines
forecasting
lightning
ESN
grounding resistance