期刊文献+

Precise Multi-Class Classification of Brain Tumor via Optimization Based Relevance Vector Machine

下载PDF
导出
摘要 The objective of this research is to examine the use of feature selection and classification methods for distinguishing different types of brain tumors.The brain tumor is characterized by an anomalous proliferation of brain cells that can either be benign or malignant.Most tumors are misdiagnosed due to the variabil-ity and complexity of lesions,which reduces the survival rate in patients.Diagno-sis of brain tumors via computer vision algorithms is a challenging task.Segmentation and classification of brain tumors are currently one of the most essential surgical and pharmaceutical procedures.Traditional brain tumor identi-fication techniques require manual segmentation or handcrafted feature extraction that is error-prone and time-consuming.Hence the proposed research work is mainly focused on medical image processing,which takes Magnetic Resonance Imaging(MRI)images as input and performs preprocessing,segmentation,fea-ture extraction,feature selection,similarity measurement,and classification steps for identifying brain tumors.Initially,the medianfilter is practically applied to the input image to reduce the noise.The graph-cut segmentation technique is used to segment the tumor region.The texture feature is extracted from the output of the segmented image.The extracted feature is selected by using the Ant Colony Opti-mization(ACO)algorithm to improve the performance of the classifier.This prob-abilistic approach is used to solve computing issues.The Euclidean distance is used to calculate the degree of similarity for each extracted feature.The selected feature value is given to the Relevance Vector Machine(RVM)which is a multi-class classification technique.Finally,the tumor is classified as abnormal or nor-mal.The experimental result reveals that the proposed RVM technique gives a better accuracy range of 98.87%when compared to the traditional Support Vector Machine(SVM)technique.
出处 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期1173-1188,共16页 智能自动化与软计算(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部