期刊文献+

Recognition for Frontal Emergency Stops Dangerous Activity Using Nano IoT Sensor and Transfer Learning

下载PDF
导出
摘要 Currently,it is difficult to extract the depth feature of the frontal emergency stops dangerous activity signal,which leads to a decline in the accuracy and efficiency of the frontal emergency stops the dangerous activ-ity.Therefore,a recognition for frontal emergency stops dangerous activity algorithm based on Nano Internet of Things Sensor(NIoTS)and transfer learning is proposed.First,the NIoTS is installed in the athlete’s leg muscles to collect activity signals.Second,the noise component in the activity signal is removed using the de-noising method based on mathematical morphology.Finally,the depth feature of the activity signal is extracted through the deep transfer learning model,and the Euclidean distance between the extracted feature and the depth feature of the frontal emergency stops dangerous activity signal is compared.If the European distance is small,it can be judged as the frontal emergency stops dangerous activity,and the frontal emergency stops dangerous activity recognition is realized.The results show that the average time delay of activity signal acquisition of the algorithm is low,the signal-to-noise ratio of the action signal is high,and the activity signal mean square error is low.The variance of the frontal emergency stops dangerous activity recognition does not exceed 0.5.The difference between the appearance time of the dangerous activity and the recognition time of the algorithm is 0.15 s,it can accurately and quickly recognize the frontal emergency stops the dangerous activity.
出处 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期1181-1195,共15页 智能自动化与软计算(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部