期刊文献+

基于语义分割的MRF深度图修复 被引量:1

MRF Depth Map Restoration with Semantic Segmentation
下载PDF
导出
摘要 由于自身成像原理的限制和自然环境的影响,通过深度相机获取的深度图存在深度缺失和测量噪声。针对上述两种问题,提出了语义分割先验的深度缺失处理和深度图平滑降噪方法。首先,彩色图像输入语义分割网络进行分割;然后,利用深度数据和彩色数据的空间、结构相关性,结合分割结果,填充深度空洞;最后,利用马尔可夫随机场,结合分割结果,对深度图进行修复。实验结果表明,该算法对不同的深度空洞鲁棒性更好,修复后的图像PSNR值至少提高了7.7%。 The depth map obtained by the depth camera has depth missing and measurement noise due to the limitations of its own imaging technique and the influence of the natural environment.For the aforementioned two issues,the semantic segmentation a priori methods of depth map smoothing and noise reduction are suggested.The depth voids are first filled using the spatial and structural correlation between the depth data and the color data in conjunction with the segmentation findings,and then the depth map is repaired using Markov random field in conjunction with the segmentation results.The experimental results demonstrate that the algorithm in this study is more resistant to various depth voids,and the restored image's PSNR is enhanced by at least 7.7%.
出处 《工业控制计算机》 2023年第6期13-15,18,共4页 Industrial Control Computer
基金 江汉大学研究生科研创新基金项目。
关键词 深度图 空洞填充 图像修复 语义分割 马尔可夫随机场 depth map hole filling image repair semantic segmentation Markov random field
  • 相关文献

参考文献7

二级参考文献41

  • 1李海军,潘晓露,李一民,吴刚,罗明刚.平行双目视觉系统中深度图像的生成与分析[J].计算机与数字工程,2006,34(2):50-51. 被引量:5
  • 2DESCOMBES X,KRUGGEL F,CRAMON VON DY.Spatio-Temporal fMRI analysis Using Markov random fields[J].IEEE Trans on Medical Imaging,1998,17(6):1028 -1039.
  • 3HELD K,KOPS ER,KRAUSE BJ,et al.Markov random field segmentation of brain MR images[J].IEEE Trans on Medical Imaging,1997,16(6):878-886.
  • 4GEMAN S,GEMAN D.Stochastic relaxation,gibbs' distributions,and bayesian restoration of images[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1984,6:721 -741.
  • 5BOUMAN C,SAUER K.A generalized gaussian image model for edge-preserving MAP estimation[J].IEEE Trans on Image Processing,1993,2:296-310.
  • 6PASCAZIO V,FERRAIUOLO G.Statistical regularization in linearized microwave imaging through MRF-based MAP estimation:hyperparameter estimation and image computation[J].IEEE Trans on Image Processing,2003,12 (5):572 -582.
  • 7DEMPSTER AP,LAIRD NM,RUBIN DB.Maximum likelihood from incomplete data via the EM algorithm[J].Journal of the Royal Statistical Society,Series B,1977,39(1):1 -38.
  • 8BILMES JA.A gentle tutorial of the EM algorithm and its application to parameter estimation for gaussian mixture and hidden Markov models[R].Technical Report,ICSI-TR-97-021,University of Berkeley:International Computer Science Institute,1998.
  • 9SAQUIB SS,BOUMAN CA,SAUER K.ML parameter estimation for Markov random fields with applications to Bayesian tomography[J].IEEE Trans on Image Processing,1998,7(7):1029 -1044.
  • 10DOUDA RO,HART PE,STORK DG.模式分类[M].李宏东,姚天翔,等译.北京:机械工业出版社,中信出版社,2003.

共引文献44

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部