期刊文献+

Future Event Prediction Based on Temporal Knowledge Graph Embedding 被引量:2

下载PDF
导出
摘要 Accurate prediction of future events brings great benefits and reduces losses for society in many domains,such as civil unrest,pandemics,and crimes.Knowledge graph is a general language for describing and modeling complex systems.Different types of events continually occur,which are often related to historical and concurrent events.In this paper,we formalize the future event prediction as a temporal knowledge graph reasoning problem.Most existing studies either conduct reasoning on static knowledge graphs or assume knowledges graphs of all timestamps are available during the training process.As a result,they cannot effectively reason over temporal knowledge graphs and predict events happening in the future.To address this problem,some recent works learn to infer future events based on historical eventbased temporal knowledge graphs.However,these methods do not comprehensively consider the latent patterns and influences behind historical events and concurrent events simultaneously.This paper proposes a new graph representation learning model,namely Recurrent Event Graph ATtention Network(RE-GAT),based on a novel historical and concurrent events attention-aware mechanism by modeling the event knowledge graph sequence recurrently.More specifically,our RE-GAT uses an attention-based historical events embedding module to encode past events,and employs an attention-based concurrent events embedding module to model the associations of events at the same timestamp.A translation-based decoder module and a learning objective are developed to optimize the embeddings of entities and relations.We evaluate our proposed method on four benchmark datasets.Extensive experimental results demonstrate the superiority of our RE-GAT model comparing to various base-lines,which proves that our method can more accurately predict what events are going to happen.
出处 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期2411-2423,共13页 计算机系统科学与工程(英文)
基金 supported by the National Natural Science Foundation of China under grants U19B2044 National Key Research and Development Program of China(2021YFC3300500).
  • 相关文献

同被引文献2

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部