期刊文献+

采用TCN-HS的滚动轴承剩余使用寿命预测 被引量:1

Prediction of remaining useful life of rolling bearingsby using TCN-HS
下载PDF
导出
摘要 滚动轴承作为旋转机械中的关键部件,对其剩余使用寿命RUL(remained useful life)的准确预测可以帮助维修人员及时制定维修计划,延长设备工作时间,保证安全。由于利用数学建模精确建立轴承退化过程的模型涉及到复杂的物理过程,所以以深度学习为基础的基于数据驱动的方法已经成为主流方法。提出了一种融合混合膨胀卷积与自适应斜率软阈值函数的时间卷积神经网络TCN-HS(temporal convolutional network with hybrid dilated convolution and self-adaptive slope thresholding)用于滚动轴承寿命预测。模型使用混合膨胀卷积HDC(hybrid dilated convolution)解决了栅格效应问题,并利用自适应斜率软阈值函数(self-adaptive slope thresholding)进一步筛选特征。为了验证TCN-HS模型的有效性,基于PHM2012轴承数据集进行了实验,结果表明:改进方法提升了模型的性能,预测结果准确。 A rolling bearing is a key component of a rotating machinery,and the accurate prediction of its remaining useful life(RUL)can help maintenance personnel make maintenance plans in time,prolong equipment working time and ensure safety.Because it involves complex physical process to accurately establish a model of bearing degradation process through mathematical modeling,the data-driven method based on deep learning becomes a popular alternative method.This paper proposes an improved temporal convolutional network with hybrid dilated convolution and self-adaptive slope thresholding(TCN-HS)function to predict the RUL of rolling bearings.This model uses hybrid dilated convolution(HDC)to solve the problem of grid effect,and uses self-adaptive slope thresholding functions to further screen features.In order to verify the effectiveness of TCN-HS model,experiments are carried out based on PHM2012 bearing data set.The results show that the improved method upgrades the model and the prediction results are accurate.
作者 王体春 吴广胜 咸玉贝 胡玉峰 WANG Tichun;WU Guangsheng;XIAN Yubei;HU Yufeng(College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210000,China;CAAC East China Regional Administration,Shanghai 200000,China)
出处 《重庆理工大学学报(自然科学)》 北大核心 2023年第6期204-211,共8页 Journal of Chongqing University of Technology:Natural Science
基金 江苏省自然科学基金面上项目(BK20221481) 国家自然科学基金项目(51775272) 华东空管局科技项目。
关键词 剩余寿命预测 时间卷积神经网络 混合膨胀卷积 自适应斜率软阈值函数 remaining useful life(RUL) temporal convolutional network(TCN) hybrid dilated convolution(HDC) self-adaptive slope thresholding function
  • 相关文献

参考文献3

二级参考文献77

  • 1徐人平,段小建,胡志勇,何复超.滚动轴承疲劳寿命P-S-N曲线[J].轴承,1996(1):21-23. 被引量:3
  • 2韩晓娟.不同条件下滚动轴承寿命的分析计算方法[J].机械设计与制造,2005(9):31-32. 被引量:9
  • 3奚立峰,黄润青,李兴林,刘中鸿,李杰.基于神经网络的球轴承剩余寿命预测[J].机械工程学报,2007,43(10):137-143. 被引量:56
  • 4TALLIAN T E.Data fitted bearing life prediction model for variable operating conditions[J].Tribology Transactions,1999,42(1):241-249.
  • 5KEER L M,BRYANT M D.A pitting model for rolling-contact fatigue[J].Journal of Lubrication Technology-Transactions of the Asme,1983,105(2):198-205.
  • 6SHAO Y,NEZU K.Prognosis of remaining bearing life using neural networks[J].Proceedings of the Institution of Mechanical Engineers,Part I:Journal of Systems and Control Engineering,2000,214(13):217-30.
  • 7GEBRAEEL N,LAWLEY M,LIU R.Residual life,predictions from vibration-based degradation signals:a neural network approach[J].IEEE Transactions on Industrial Electronics,2004,51(3):694-700.
  • 8HUANG R Q,XI L F,LI X L.Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods[J].Mechenical Systems and Signal Processing,2007,21(1):193-207.
  • 9BEN ALIJ,CHEBEL-MORELLOB,SAIDIL.Accuratebearing remaining useful life prediction based on Weibull distribution and artificial neural network[J].Mechenical Systems and Signal Processing,2015,150(72):56-57.
  • 10GRAHAM-ROWE D, GOLDSTON D, DOCTOROW C, et al. Big data: Science in the petabyte era[J]. Nature, 2008, 455(7209): 8-9.

共引文献390

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部