期刊文献+

Deep learning assisted variational Hilbert quantitative phase imaging 被引量:5

下载PDF
导出
摘要 We propose a high-accuracy artifacts-free single-frame digital holographic phase demodulation scheme for relatively lowcarrier frequency holograms-deep learning assisted variational Hilbert quantitative phase imaging(DL-VHQPI).The method,incorporating a conventional deep neural network into a complete physical model utilizing the idea of residual compensation,reliably and robustly recovers the quantitative phase information of the test objects.It can significantly alleviate spectrum-overlapping-caused phase artifacts under the slightly off-axis digital holographic system.Compared to the conventional end-to-end networks(without a physical model),the proposed method can reduce the dataset size dramatically while maintaining the imaging quality and model generalization.The DL-VHQPI is quantitatively studied by numerical simulation.The live-cell experiment is designed to demonstrate the method's practicality in biological research.The proposed idea of the deep learning-assisted physical model might be extended to diverse computational imaging techniques.
出处 《Opto-Electronic Science》 2023年第4期1-11,共11页 光电科学(英文)
基金 We are grateful for financial supports from the National Natural Science Foundation of China(61905115,62105151,62175109,U21B2033,62227818) Leading Technology of Jiangsu Basic Research Plan(BK20192003) Youth Foundation of Jiangsu Province(BK20190445,BK20210338) Biomedical Competition Foundation of Jiangsu Province(BE2022847) Key National Industrial Technology Cooperation Foundation of Jiangsu Province(BZ2022039) Fundamental Research Funds for the Central Universities(30920032101) Open Research Fund of Jiangsu Key Laboratory of Spectral Imaging&Intelligent Sense(JSGP202105,JSGP202201) National Science Center,Poland(2020/37/B/ST7/03629).The authors thank F.Sun for her contribution to this paper in terms of language expression and grammatical correction.
  • 相关文献

同被引文献70

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部