期刊文献+

一类非线性Schrodinger方程变号解的存在性

Existence of Sign Changing Solution fora Class of Nonlinear Schr dinger Equations
下载PDF
导出
摘要 研究了一类非线性Schr dinger方程:-Δu+V x u=f x,u,x∈RN,其中f的原函数满足的超二次条件比(AR)条件更弱.利用下降流不变集方法,证明了该方程存在变号解. In this paper,we consider a class of nonlinear Schr dinger equations-Δu+V x u=f x,u,x∈RN,where the super-quadratic conditions satisfied by the primitive of f are weaker than Ambrosetti-Rabinowitz type condition.By using the method of invariant sets of descending flow,we prove the existence of sign changing solution for this equation.
作者 陈瑾 范馨香 CHEN Jin;FAN Xin-xiang(Concord University College,Fujian Normal University,Fuzhou 350117,China)
出处 《兰州文理学院学报(自然科学版)》 2023年第4期18-22,51,共6页 Journal of Lanzhou University of Arts and Science(Natural Sciences)
基金 福建省教育厅中青年教师教育科研项目(JT180818、JAT191128) 福建省教育科学“十三五”规划项目(FJJKCG19-106)。
关键词 SCHRODINGER方程 下降流不变集 变号解 Schr dinger equation invariant set of descending flow sign changing solution
  • 相关文献

参考文献1

二级参考文献9

  • 1A.Ambrosetti,P.H.Rabinowitz. Dual Variational methods in Critical point theory and applications, [J] . J.Funct. A nal,1973,14(4) :349-381.
  • 2T.Bartsch, Z.Q.Wang. Existence and multiplicity results for some suplinear elliptic problems[J]. Comm.partial Differential Equation, 1995,(20):1725-1741.
  • 3T.Bartsch,M.willem,Infinitely many nonradial solutions of a Euclidean Scalar field equation[J].J.Funct.Anal, 1993, (117 ) : 447 -460.
  • 4Y.H.Ding,Infinitely many entire solutions of an elliptic system with Symmetry[j]. Topoi Methods Nonlinear Arial, 1997,(9):313-323.
  • 5Y.Ding,A.Szulkin,Bound states for semifinear equations with sign-changing potential[J]. Calc. Vat.partial Differential Equations. ,2007,29(3) :397-419.
  • 6L.Jeanjean,On the existence of bounded palais-smale sequences and Application to a Landesman-Lazer type problem set on[J]. Proc.Roy. Soc.Edinburgh Sect.A, 1999,(129) :787-809.
  • 7Q.Zhang,B.Xu,Multiplicity of solutions for a class of semilinear schrodinger equations with sign-changing potential[J].J.Marh. Anal.Appl,2011,(377):834-840.
  • 8T.Bartsch,Z.-Q.Wang,M.Willem,The Dirichlet problem for superlinear Elliptic equations[A].M.Chipot,P.Quittner (Eds.). Handbook of Differential Equations-Stationary Partial Differential Equations, Voi.2[ C ]. Elsevier,2005.
  • 9P.H.Rabinowitz,Minimax methods in critical point theory with appiications to differential equations[Z], in CBMS Reg.Conf.in Math.,Vol. 65.Amer.Math.Soc., Providence,RI,1986.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部