摘要
仿生物学无人机集群的兴起给雷达目标跟踪和识别带来新挑战,不同集群飞行模式对雷达数据处理及集群目标辨识会产生不同影响。为分析集群对雷达跟踪识别的影响机理,本文对仿雁群、仿狼群、仿蜂群三种无人机集群飞行过程进行建模,分别模拟无人机集群的大范围输运、抵近围捕攻击和稳健信息通信;其次探讨了不同集群方式对雷达航迹起始、数据关联及跟踪滤波关键算法的影响机理;最后结合三种仿生物学运动特点,基于聚类思想设计了集群事件模式的辨识方法,给出了每种集群模式辨识的判定规则。仿真表明,不同集群模式存在相对较优的数据处理算法组合,针对集群模式优选跟踪算法可以提高雷达对集群目标的跟踪精度并降低时间成本,且能够实现对不同集群模式的辨识,有利于判断目标意图以及后续处理。
The rise of biomimetic unmanned aerial vehicle(UAV)cluster has brought new challenges for radar target tracking and identification.Different cluster flight modes will have different impacts on radar data processing and cluster target identification.For analyzing the influence mechanism of the cluster on radar tracking and identification,this paper models the flight process of UAV cluster based on three kinds of species:geese,wolves and bees,which respectively simulated the large-scale transport,close-in rounding attack and robust information communication of UAV cluster.Secondly,it discusses the influence mechanism of different cluster modes on several algorithms of tracking:track initiation,data association and tracking filter.Finally,combined with the characteristics of three biological movements,it designs the identification methods of cluster event pattern based on clustering in detail,and gives the judgment rules.The simulation results show that there is the suitable combination of radar data processing algorithms for different clustering modes.The optimized tracking algorithm combination based on different clustering modes can effectively improve the tracking accuracy of the radar cluster target,and can reduce the time cost.Moreover,the method proposed in this paper can realize the identification of different cluster patterns to the judgment of target intention and provide the subsequent processing.
作者
高玮
饶彬
周永坤
Gao Wei;Rao Bin;Zhou Yongkun(School of Electronics and Communication Engineering,Sun Yat-sen University,Shenzhen 518107,China)
出处
《航空兵器》
CSCD
北大核心
2023年第3期103-111,共9页
Aero Weaponry
基金
深圳市科技计划资助项目(KQTD20190929172704911)。
关键词
仿生物群
无人机集群
雁群
狼群
蜂群
雷达目标跟踪
模式辨识
biomimetic group
UAV cluster
geese
wolves
bees
radar target tracking
pattern identification