摘要
针对传统目标识别方法难以提取雷达高分辨距离像(HRRP)的深层特征问题,提出了一种基于注意力机制的简单循环单元(SRU)的模型进行HRRP目标识别。该模型通过SRU快速提取HRRP时序特性,引入自注意力机制自适应对重要特征进行加权,增强隐藏层状态特征的表达能力。同时通过堆叠由SRU,自注意力机制和前馈神经网络组成的模块构建深层网络,对HRRP深层特征自动提取。实验结果表明,对比其他模型,该模型可以有效识别目标。在二维可视化下,提取的深层特征可分性最好。
In order to solve the problem that traditional target recognition method is difficult to extract the deep feature of radar High-Resolution Range Profile(HRRP),a model of Simple Recurrent Unit(SRU)based on attention mechanism is proposed for HRRP target recognition.The model quickly extracts HRRP temporal feature by SRU,introduces a self-attention mechanism to adaptively weight important feature,and enhances the expression of hidden layer state feature.Meanwhile the model automatically extracts HRRP deep feature by stacking modules consisting of SRU,self-attentive mechanism and feedforward neural network.The experimental results show that the model can effectively recognize target.Under two-dimensional visualization,the model extracts the best separability of deep feature.
作者
岳智彬
卢建斌
万露
YUE Zhibin;LU Jianbin;WAN Lu(College of Electronic Engineering,Naval University of Engineering,Wuhan 430033)
出处
《舰船电子工程》
2023年第4期44-48,共5页
Ship Electronic Engineering
关键词
雷达自动目标识别
高分辨距离像
循环神经网络
注意力机制
radar automatic target recognition(RATR)
high-resolution range profile(HRRP)
recurrent neural network(RNN)
attention mechanism