期刊文献+

Identification of pollution sources in rivers using a hydrodynamic diffusion wave model and improved Bayesian-Markov chain Monte Carlo algorithm 被引量:1

原文传递
导出
摘要 Water quality restoration in rivers requires identification of the locations and discharges of pollution sources,and a reliable mathematical model to accomplish this identification is essential.In this paper,an innovative framework is presented to inversely estimate pollution sources for both accident preparedness and normal management of the allowable pollutant discharge.The proposed model integrates the concepts of the hydrodynamic diffusion wave equation and an improved Bayesian-Markov chain Monte Carlo method(MCMC).The methodological framework is tested using a designed case of a sudden wastewater spill incident(i.e.,source location,flow rate,and starting and ending times of the discharge)and a real case of multiple sewage inputs into a river(i.e.,locations and daily flows of sewage sources).The proposed modeling based on the improved Bayesian-MCMC method can effectively solve high-dimensional search and optimization problems according to known river water levels at pre-set monitoring sites.It can adequately provide accurate source estimation parameters using only one simulation through exploration of the full parameter space.In comparison,the inverse models based on the popular random walk Metropolis(RWM)algorithm and microbial genetic algorithm(MGA)do not produce reliable estimates for the two scenarios even after multiple simulation runs,and they fall into locally optimal solutions.Since much more water level data are available than water quality data,the proposed approach also provides a cost-effective solution for identifying pollution sources in rivers with the support of high-frequency water level data,especially for rivers receiving significant sewage discharges.
出处 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2023年第7期91-105,共15页 环境科学与工程前沿(英文)
基金 the National Natural Science Foundation of China(Grant No.51979195) the National Key R&D Program of China(No.2021YFC3200703).
  • 相关文献

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部