期刊文献+

Tuning Active Metal Atomic Spacing by Filling of Light Atoms and Resulting Reversed Hydrogen Adsorption-Distance Relationship for Efficient Catalysis 被引量:3

下载PDF
导出
摘要 Precisely tuning the spacing of the active centers on the atomic scale is of great significance to improve the catalytic activity and deepen the understanding of the catalytic mechanism,but still remains a challenge.Here,we develop a strategy to dilute catalytically active metal interatomic spacing(d_(M-M))with light atoms and discover the unusual adsorption patterns.For example,by elevating the content of boron as interstitial atoms,the atomic spacing of osmium(d_(Os-Os))gradually increases from 2.73 to 2.96?.More importantly,we find that,with the increase in dOs-Os,the hydrogen adsorption-distance relationship is reversed via downshifting d-band states,which breaks the traditional cognition,thereby optimizing the H adsorption and H_2O dissociation on the electrode surface during the catalytic process;this finally leads to a nearly linear increase in hydrogen evolution reaction activity.Namely,the maximum dOs-Os of 2.96?presents the optimal HER activity(8 mV@10 mA cm^(-2))in alkaline media as well as suppressed O adsorption and thus promoted stability.It is believed that this novel atomic-level distance modulation strategy of catalytic sites and the reversed hydrogen adsorption-distance relationship can shew new insights for optimal design of highly efficient catalysts.
出处 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期151-162,共12页 纳微快报(英文版)
基金 financially sponsored by the National Natural Science Foundation of China(Grant Nos.22075223,22179104) the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology)(2022-ZD-4)。
  • 相关文献

同被引文献20

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部