摘要
Engel群是次黎曼几何中的一类重要的单连通幂零李群.本文研究了Engel群E=(R^(4),■,{δλ})的有界区域Ω上次Laplace算子△_(E)的狄利克雷特征值问题■其中v是边界?Ω的单位外法向量场.我们建立了该问题的一些万有特征值不等式.
The Engel groups are one important kind of simply connected nilpotent Lie groups in sub-Riemannian geometry.In this paper,we investigate the Dirichlet eigenvalue problem of the sub-Laplacian Δ_(E) on a bounded domain Ω of the Engel group E=(R^(4),■,{δλ}) as follows■ where v is the outwards unit normal vector field of ?Ω.We establish some universal inequalities for eigenvalues of this problem.
作者
白晨
孙和军
ZHANG Xue-ying;WANG Chao-yue;ZHANG Chuan-zhou;XIAO Jun(College of Science,Wuhan University of Science and Technology,Wuhan 430065,China)
出处
《数学杂志》
2023年第5期409-421,共13页
Journal of Mathematics
基金
Supported by National Natural Science Foundation of China (11001130)
Fundamental Research Finds for the Central Universities (30917011335)。
关键词
特征值
不等式
Engel群
次拉普拉斯算子
Vilenkin-like system
maximal operator
Dirichlet kernels
Fejer kernels