期刊文献+

基于多策略组合的改进差分进化算法 被引量:2

Improved differential evolution algorithm with multi-strategies
下载PDF
导出
摘要 作为求解全局数值优化及复杂黑盒问题的流行方法之一,差分进化算法的性能主要取决于其变异策略和控制参数的设置。为避免算法陷入局部最优和早熟收敛,提出了一种基于多策略组合的改进差分进化算法。首先,该算法利用个体种群适应度排名,再将种群分成3个不同子种群,并依据各子种群特征分配不同的变异算子。其次,为进一步提高算法的搜索能力,分别考虑不同差分项的作用并充分利用父代和子代间的差异信息,提出了改进的自适应参数设置方法。最后,通过在IEEE CEC2014标准测试集上进行数值实验,并与5个DE变体相比,数值实验及非参数检验结果表明所提算法具有更快的收敛速度和寻优能力。 As one of the most popular methods for solving global numerical optimization and complex black-box problems,the performance of the differential evolution(DE)algorithm is mainly depends on its mutation strategy and the setting of control parameters.In order to avoid falling into local optimum and premature convergence,an improved DE algorithm based on multi strategy combination was proposed.Firstly,the algorithm utilizes individual population fitness for ranking,divides the population into three different subpopulations,and assigns different mutation operators based on the characteristics of each subpopulation.Secondly,to further improve the search ability of the algorithm,an improved adaptive parameter setting method was proposed by considering the effects of different differences and fully utilizing the difference information between parents and offspring.Finally,through numerical experiments on the IEEE CEC2014 standard test set,and compared with five DE variants,numerical experiments and non-parametric test results show that the proposed algorithm has faster rate of convergence and optimization ability.
作者 贺兴时 孟炎辉 田梦男 高杨涵 HE Xingshi;MENG Yanhui;TIAN Mengnan;GAO Yanghan(School of Science,Xi’an Polytechnic University,Xi’an 710048,China)
出处 《纺织高校基础科学学报》 CAS 2023年第4期80-88,共9页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金(12101477)。
关键词 数值优化 差分进化 变异算子 控制参数 策略组合 numerical optimization differential evolution mutation operator control parameters strategy combination
  • 引文网络
  • 相关文献

参考文献3

二级参考文献32

  • 1吴亮红,王耀南,袁小芳,周少武.自适应二次变异差分进化算法[J].控制与决策,2006,21(8):898-902. 被引量:80
  • 2栾丽君,谭立静,牛奔.一种基于粒子群优化算法和差分进化算法的新型混合全局优化算法[J].信息与控制,2007,36(6):708-714. 被引量:70
  • 3KENNEDY J ,EBERHART R. Particle swarm optimization[C]//International Conference on Neural Networks. Perth: IEEE, 1995 .. 1942-1948.
  • 4HE Z,WEI C, YANG L. Extracting rules from fuzzy neural network by particle swarm optimization[C]//Proc IEEE Confon Evolutionary Computation. Piscataway .. IEEE, 1999 : 1927-1930.
  • 5PAN Q K,TASGETIREN M F,LIANG Y C. A discrete particle awarm optimization algorithm for the no-wait flow- shop scheduling problem[J]. Computer and Operations Research, 2008,35 (28) : 2807-2839.
  • 6SHI Y,EBEMART R C. A modified particle swam optimizer[C]//Proceedings of 1998 IEEE International Conference on Evolutionary Computation. New York .. IEEE, 1998 : 69-73.
  • 7STORN R, PRICE K. Differential Evolution: A simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997,11 (9) : 341-359.
  • 8SU C T, LEE C S. Network reconfiguration of distribution systems using improved mixed integer hybrid differential e- volution[J]. IEEE Power Delivery Review,2002,22(12): 60-66.
  • 9LIN Y C, HWANG K S, WANG F S. Co-evolutionary hybrid differential evolution for mixed-integer optimization problems[J]. Engineering Optimization, 2001,33 (6) : 663-682.
  • 10QIN A K, HUANG V L, SUGANTHAN P N. Differential evolution algorithm with strategy adaptation for global nu- merical optimization[J]. IEEE Transactions on Evolutionary Computation, 2009,13 (2) : 398-417.

共引文献18

同被引文献21

引证文献2

相关主题

;
使用帮助 返回顶部