期刊文献+

Recognition of mortar pumpability via computer vision and deep learning

下载PDF
导出
摘要 The mortar pumpability is essential in the construction industry,which requires much labor to estimate manually and always causes material waste.This paper proposes an effective method by combining a 3-dimensional convolutional neural network(3D CNN)with a 2-dimensional convolutional long short-term memory network(ConvLSTM2D)to automatically classify the mortar pumpability.Experiment results show that the proposed model has an accuracy rate of 100%with a fast convergence speed,based on the dataset organized by collecting the corresponding mortar image sequences.This work demonstrates the feasibility of using computer vision and deep learning for mortar pumpability classification.
出处 《Journal of Electronic Science and Technology》 EI CAS CSCD 2023年第3期73-81,共9页 电子科技学刊(英文版)
基金 supported by the Key Project of National Natural Science Foundation of China-Civil Aviation Joint Fund under Grant No.U2033212。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部