期刊文献+

基于三种预测模型的乳腺超声BI-RADS分类3~5类结节恶性危险分层量化评分研究 被引量:2

Study on quantitative scoring of malignant risk stratification of breast ultrasound BI-RADS Category 3-5 nodules based on three prediction models
下载PDF
导出
摘要 目的 探讨更加客观、准确、规范、简单易推广的乳腺结节量化评估分类标准。方法 回顾性分析2019年1月至2023年2月在深圳市人民医院及深圳市龙华区妇幼保健院行超声检查并有明确病理结果的644个乳腺结节,应用SPSS统计学软件随机分为训练组(n=439)和测试组(n=205)。收集乳腺结节的超声声像特征、年龄、病理结果等资料,分别建立基于计数法、权重法和回归公式法的量化评分预测模型,并绘制受试者工作特征(ROC)曲线,以ROC曲线下面积(AUC)和测试试验对标病理结果分析各预测模型的诊断效能,并与BI-RADS分类的诊断效能进行比较,筛选出兼具有效性和特异度的最优模型。结果 训练组的439个乳腺结节中,良性结节328个,恶性结节111个。基于计数法、权重法、回归公式法的评分标准均为客观地评估乳腺结节的分类标准,诊断效能均优于传统BI-RADS分类。基于权重法和回归公式法的预测模型对良恶性乳腺结节的诊断价值高于计数法,基于权重法和回归公式法的预测模型对良恶性乳腺结节的诊断价值差异无统计学意义(P> 0.05)。结论 基于权重法建立BI-RADS分类量化评分标准更客观实用,易于临床推广。 Objective To explore more objective,accurate,standardized,simple and easy-to-popularize classification criteria for quantitative evaluation of breast nodules.Methods A total of 644 breast nodules with definite pathological results at Shenzhen People’s Hospital and Shenzhen Longhua District Maternal and Child Health Hospital from January 2019 to February 2023 was retrospectively analyzed and randomly divided into the training group(n=439)and the test group(n=205)by SPSS software.The ultrasonic image features,patient age and pathological results of breast nodules were collected,and quantitative scoring prediction models based on counting method,weight method and regression formula method were established respectively,and the receiver operating characteristic(ROC)curve was drawn.The diagnostic efficiency of each prediction model was analyzed by the area under curve(AUC)of ROC and the pathological results of test,and then it was compared with the diagnostic efficiency of BI-RADS classification to select the optimal model with both high efficiency and specificity.Results Among the 439 breast nodules in the training group,there were 328 benign nodules and 111 malignant nodules.The scoring criteria based on counting method,weight method and regression formula method were all classification criteria for objectively evaluating breast nodules,with diagnostic efficiency better than that of traditional BI-RADS classification.The predictive model based on weight method and regression formula method had higher diagnostic value for benign and malignant breast nodules than that based on counting method,and there was no statistical difference between the former two models(P>0.05).Conclusion The quantitative scoring criteria of BI-RADS classification established based on weight method is more objective and practical,and easy to be popularized in clinical practice.
作者 陈亚岩 王迎秋 田苗 廖婷婷 薛淑贞 罗慧 CHEN Yayan;WANG Yingqiu;TIAN Miao;LIAO Tingting;XUE Shuzhen;LUO Hui(School of Medicine,Shantou University,Guangdong,Shantou 515000,China;Department of Ultrasound,Shenzhen Longhua District Maternal and Child Healthcare Hospital,Guangdong,Shenzhen 518109,China;Department of Ultrasound,Shenzhen People’s Hospital,Guangdong,Shenzhen 518001,China)
出处 《中国医药科学》 2023年第17期156-159,共4页 China Medicine And Pharmacy
关键词 乳腺结节 超声 年龄 BI-RADS分类 危险分层 量化评分 Breast nodules Ultrasound Age BI-RADS classification Risk stratification Quantitative scoring
  • 相关文献

参考文献13

二级参考文献126

  • 1周世崇,范亦武,曾炜,丁建辉,陈敏,王伯华,邱月芳,高毅,张迅,常才.上海社区乳腺癌筛查初步小结:超声及乳腺X线的漏诊、误诊病例分析[J].上海医学影像,2012,21(4):291-293. 被引量:4
  • 2马恒敏,王圣芳,冷玲,朱峰,李琰琰,史思达,左文述,王家林.山东省肥城市2008-2011年乳腺癌筛查结果分析[J].中华肿瘤防治杂志,2013,20(2):88-92. 被引量:11
  • 3American College of Radiology.BI-RADS:ultrasound.In:Breast Imaging Reporting and Data System:BI-RADS Atlas.4th ed.Reston,VA:American College of Radiology,2003.
  • 4Lazarus E,Mainiero MB,Schepps B,et al.BIRADS lexicon for US and mammography:interobserver variability and positive predictive value.Radiology,2006,239:385-391.
  • 5Lee HJ,Kim EK,Kim MJ,et al.Observer variability of Breast Imaging Reporting and Data System (BI-RADS) for breast ultrasound.Eur J Radiol,2008,65:293-298.
  • 6Park CS,Lee JH,Yim HW,et al.Observer agreement using the ACR Breast Imaging Reporting and Data System (BI-RADS)ultrasound,First Edition (2003).Korean J Radiol,2007,8:397-402.
  • 7Abdullah N,Mesurolle B,El-Khoury M,et al.Breast imaging reporting and data system lexicon for US:interobserver agreement for assessment of breast masses.Radiology,2009,252:665-672.
  • 8Landis JR,Koch GG.The measurement of observer agreement for categorical data.Biometrics,1977,33:159-174.
  • 9Berg WA,D' Orsi CJ,Jackson VP,et al.Does training in the Breast Imaging Reporting and Data System (BI-RADS) improve biopsy recommendations or feature analysis agreement with experienced breast imagers at mammography? Radiology,2002,224:871-880.
  • 10Orel SG,Kay N,Reynolds C,et al.BI-RADS categorization as a predictor of malignancy.Radiology,1999,211:845-850.

共引文献1151

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部