期刊文献+

关联代数上的ξ-Lie导子

The ξ-Lie derivations of incidence algebras
下载PDF
导出
摘要 用纯代数的方法探讨了含有单位元的交换环R上的关联代数I(X, R)(其中X是局部有限预序集)上ξ-Lie导子(ξ≠0,±1)的性质,给出了ξ-Lie导子的表达形式及系数之间的关系,并证明了ξ≠1时关联代数I(X, R)上任意ξ-Lie导子(ξ≠1)是导子。 The properties of ξ-Lie derivations(ξ≠0,1)on incidence algebras I(X,R)(X be a locally finite preordered set)over commutative rings R with identity are discussed by using the method of pure algebra.The expression form of ξ-Lie derivations and the relationship between coefficients are given.It is proved that any ξ-Lie derivation(ξ≠1)on incidence algebras I(X,R)is a derivation.
作者 姜欣彤 Jiang Xintong(College of Mathematics and Computer,Jilin Normal University,Changchun 130000,China)
出处 《湖南文理学院学报(自然科学版)》 CAS 2023年第4期11-15,共5页 Journal of Hunan University of Arts and Science(Science and Technology)
关键词 关联代数 ξ-Lie导子 导子 恒等式 incidence algebra ξ-Lie derivation derivation identity
  • 相关文献

参考文献5

二级参考文献30

  • 1HAN DEGUANG Department of Mathematics, Qufa Normal University, Qufu 273165, Shandong, China..CONTINUITY AND LINEARITY OF ADDITIVE DERIVATIONS OF NEST ALGEBRAS ON BANACH SPACES[J].Chinese Annals of Mathematics,Series B,1996,17(2):227-236. 被引量:3
  • 2Putnam C. R., Commutation Properties of Hilbert Space Operators and Related Topics, New York: Springer- Verlag, 1967.
  • 3Kassel C., Quantum Groups, New York: Springer-Verlag, 1995.
  • 4Brooke J. A., Busch P., Pearson B., Commutativity up to a factor of bounded operators in complex Hilbert spaces, R. Soc. Lond. Proc. Set. A Math. Phys. Eng. Sci., 2002, 458(A): 109-118.
  • 5Martindale III W. S., When are multiplicative mappings additive? Proc. Amer. Math. Soc., 1969, 21: 695498.
  • 6An R., Hou J., Additivity of Jordan multiplicative maps on Jordan operator algebras, Taiwan Residents J. Math., 2006, 10: 45-64.
  • 7Lu F., Additivity of Jordan maps on standard operator algebras, Lin. Alg Appl., 2002, 357: 123-131.
  • 8Bai Z., Du S., Hou J., Multiplicative Lie isomorphisms between prime rings, Com. Alg., 2008, 36: 1626-1633.
  • 9Bai Z., Du S., Multiplicative *-Lie isomorphisms between factors, J. Math. Anal. Appl., 2008, 346: 327-335.
  • 10Beidar K., Bresar M., Chebotar M. A., Functional identities on upper triangular matrix algebras, J. Math. Sci., 2002, 102: 4557-4565.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部