期刊文献+

基于迁移学习与残差网络的刀具磨损状态监测 被引量:1

Tool Wear Monitoring Based on Transfer Learning and Deep Residual Network
下载PDF
导出
摘要 针对现有基于深度学习的刀具磨损状态监测方法训练样本少、识别精度低的问题,建立基于迁移学习(TL)与深度残差网络(ResNet)的铣刀磨损状态监测模型。将刀具加工过程中的振动监测信号通过连续小波变换转换成能量时频图,作为网络模型的输入;将在ImageNet数据集上训练的ResNet50模型作为预训练模型,通过迁移学习的方法,应用到刀具磨损状态监测领域当中。实例验证表明:TL-ResNet模型的平均识别准确率达到98.52%,实现了刀具不同磨损状态下的智能识别,有效提高了刀具磨损状态监测的准确性和稳定性。 To solve the problem that the existing tool wear monitoring methods based on deep learning require too many samples and have low identification accuracy,a tool wear monitoring model based on transfer learning(TL)and deep residual network(ResNet)was established.The vibration monitoring signals during tool machining were converted into energy time-frequency diagram by continuous wavelet transform,which were used as the input of network model.The ResNet50 model trained on ImageNet dataset was used as the pre-training model,and was applied to the field of tool wear state monitoring by transfer learning method.The example verification shows that the recognition accuracy of TL-ResNet reaches 98.52%,realizing intelligent recognition under different tool wear states.So the accuracy and stability of tool wear state monitoring are improved effectively.
作者 周建民 王云庆 杨晓彤 黄熙亮 夏晓枫 ZHOU Jianmin;WANG Yunqing;YANG Xiaotong;HUANG Xiliang;XIA Xiaofeng(Key Laboratory of Conveyance and Equipment,Ministry of Education,East China Jiaotong University,Nanchang Jiangxi 330013,China;State Key Laboratory of Rail Transit Infrastructure Performance Monitoring and Guarantee,Nanchang Jiangxi 330013,China)
出处 《机床与液压》 北大核心 2023年第18期215-220,共6页 Machine Tool & Hydraulics
基金 国家自然科学基金地区科学基金项目(51865010) 江西省教育厅科技项目(GJJ210639)。
关键词 刀具 状态监测 迁移学习 ResNet50 Cutting tool Condition monitoring Transfer learning ResNet50
  • 相关文献

参考文献3

二级参考文献53

共引文献355

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部