摘要
针对现有语义分割网络模型在道路语义分割方面检测精度低、计算量大等问题,基于BiSeNet V2网络模型进行优化改进,引入一种高效的通道注意力(efficient channel attention,ECA)模块,在BiSeNet V2的语义分支和细节分支的每个阶段末端分别加入ECA,得到ECA-Semantic-BiSeNet V2网络。使用实车采集道路图像数据进行标注并构建自采数据集,在Cityscapes数据集、KITTI数据集及自采数据集上分别对改进前后的网络模型进行试验验证。试验结果表明,与BiSeNet V2模型方法相比,本研究方法在Cityscapes数据集上MIoU提高14.01%,在KITTI数据集上MIoU提高1.86%,同时在BiSeNet V2的语义分支加入ECA后运算量增加0.02 GFlops的条件下,模型推理速度提高了7.82帧/s。
To address the problems of low detection accuracy and high computational effort of the existing semantic segmentation net-work model in road semantic segmentation,this study optimized and improved the BiSeNet V2 network model by introducing an effi-cient channel attention(ECA)module.The ECA module was added at the end of each semantic path and detail path of BiSeNet V2 network respectively to obtain the ECA-Semantic-BiSeNet V2 network.Road image data collected by real vehicles were used to label and build self-collected data sets.The network models before and after improvement were tested and verified on Cityscapes data sets,KITTI data sets and self-collected data sets.The experimental results showed that compared with the BiSeNet V2 model method,this research method improved Miou by 14.01%on the Cityscapes dataset and 1.86%on the KITTI dataset,and the model reasoning speed increased by 7.82 fonts/s with the addition of ECA to the semantic path of BiSeNet V2 network with an increase of 0.02 GFlops.
作者
王碧瑶
韩毅
崔航滨
刘毅超
任铭然
高维勇
陈姝廷
刘嘉巍
崔洋
WANG Biyao;HAN Yi;CUI Hangbin;LIU Yichao;REN Mingran;GAO Weiyong;CHEN Shuting;LIU Jiawei;CUI Yang(School of Automobile,Chang'an University,Xi'an 710064,Shaanxi,China)
出处
《山东大学学报(工学版)》
CAS
CSCD
北大核心
2023年第5期37-47,共11页
Journal of Shandong University(Engineering Science)
基金
国家重点研发计划资助项目(2021YFB2601000)
中央高校基本科研业务费专项资金—长安大学优秀博士学位论文培育资助项目(300203211221)
陕西省秦创原队伍建设资助项目(2022KXJ-021)。