期刊文献+

Activation of the wnt/β-catenin/CYP1B1 pathway alleviates oxidative stress and protects the blood-brain barrier under cerebral ischemia/reperfusion conditions 被引量:7

下载PDF
导出
摘要 Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier.However,the potential links between them following ischemic stroke remain largely unknown.The present study found that cerebral ischemia leads to oxidative stress and repression of the Wnt/β-catenin pathway.Meanwhile,Wnt/β-catenin pathway activation by the pharmacological inhibito r,TWS119,relieved oxidative stress,increased the levels of cytochrome P4501B1(CYP1B1)and tight junction-associated proteins(zonula occludens-1[ZO-1],occludin and claudin-5),as well as brain microvascular density in cerebral ischemia rats.Moreove r,rat brain microvascular endothelial cells that underwent oxygen glucose deprivation/reoxygenation displayed intense oxidative stress,suppression of the Wnt/β-catenin pathway,aggravated cell apoptosis,downregulated CYP1B1and tight junction protein levels,and inhibited cell prolife ration and migration.Overexpression ofβ-catenin or knockdown ofβ-catenin and CYP1B1 genes in rat brain mic rovascular endothelial cells at least partly ameliorated or exacerbated these effects,respectively.In addition,small interfering RNA-mediatedβ-catenin silencing decreased CYP1B1 expression,whereas CYP1B1 knoc kdown did not change the levels of glycogen synthase kinase 3β,Wnt-3a,andβ-catenin proteins in rat brain microvascular endothelial cells after oxygen glucose deprivatio n/reoxygenation.Thus,the data suggest that CYP1B1 can be regulated by Wnt/β-catenin signaling,and activation of the Wnt/β-catenin/CYP1B1 pathway contributes to alleviation of oxidative stress,increased tight junction levels,and protection of the blood-brain barrier against ischemia/hypoxia-induced injury.
出处 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1541-1547,共7页 中国神经再生研究(英文版)
基金 supported by the National Natural Science Foundation of China,No.81771250(to XC) the Natural Science Foundation of Fujian Province,Nos.2020J011059(to XC),2020R1011004(to YW),2021J01374(to XZ) Medical Innovation Project of Fujian Province,No.2021 CXB002(to XC) Fujian Research and Training Grants for Young and Middle-aged Leaders in Healthcare(to XC)。
  • 相关文献

同被引文献63

引证文献7

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部