期刊文献+

领域对抗自适应的短任务负载预测模型

Domain Adversarial Adaptive Short-Term Workload Forecasting Model
下载PDF
导出
摘要 负载预测的精度是影响云平台弹性资源管理的主要因素之一。而云平台中存在着大量的短任务负载序列,其历史信息不足和不平滑的特性导致难以选择合适的模型进行精准预测。对此提出了一种领域对抗自适应的短任务负载预测模型。该模型采用奇异谱分析(singular spectrum analysis,SSA)对样本进行平滑处理;联合第四版本的Mueen相似度搜索算法(the fourth version of Mueen’s algorithm for similarity search,MASS_V4)与时间特征进行域间相似性计算,获得合适的源域数据来辅助迁移预测;将门控循环单元(gated recurrent unit,GRU)作为基准器构建网络,并利用Y差异定义新的损失函数,通过对抗过程建立出表征能力强的短任务负载预测模型。将所提方法在两个真实的云平台数据集上与其他常用的云负载预测算法对比,均表现出较高的预测精度。 The accuracy of workload prediction is one of the main factors affecting the elastic resource management of cloud platforms.And there are a large number of short task workload sequences with insufficient historical information and unsmooth characteristics in the cloud,which makes it difficult to select appropriate models for accurate prediction.In this paper,a domain adversarial workload prediction model is proposed.The model uses SSA(singular spectrum analysis)to smooth the workload and solve the problem of irregularity.Similarity calculations are performed by combining MASS_V4(the fourth version of Mueen’s algorithm for similarity search)with temporal features to obtain suitable source-domain data-assisted migration prediction.The GRU(gated recurrent unit)is used as the reference to construct the network,a new loss function defined is with Y-discrepancy,and a prediction model is constructed with strong short-workload feature representation ability in the adversarial process.The proposed method is compared with other commonly used cloud workload prediction algorithms on two real cloud platform datasets and both show higher prediction accuracy.
作者 刘春红 焦洁 王敬雄 李为丽 张俊娜 LIU Chunhong;JIAO Jie;WANG Jingxiong;LI Weili;ZHANG Junna(College of Computer and Information Engineering,Henan Normal University,Xinxiang,Henan 453007,China;Engineering Lab of Intelligence Business&Internet of Things,Henan Province,Xinxiang,Henan 453007,China)
出处 《计算机工程与应用》 CSCD 北大核心 2023年第24期289-297,共9页 Computer Engineering and Applications
基金 国家自然科学基金(61902112) 广西密码学与信息安全重点实验室研究课题(GCIS202115) 河南省高等学校重点科研项目应用研究计划(23A520036)。
关键词 云计算 负载预测 域对抗迁移学习 MASS_V4 cloud computing workload prediction domain antagonism transfer learning the fourth version of Mueen’s algorithm for similarity search(MASS_V4)
  • 相关文献

参考文献4

二级参考文献40

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部