摘要
为了探究铜基粉末冶金闸片块的摩擦磨损特性,在UMT-5摩擦试验机上进行销-盘摩擦试验,研究分析了转速、压力、温度对摩擦磨损性能的影响,并用3D光学显微镜对摩擦表面形貌进行分析。研究表明:摩擦块在235N法向压力时,随着摩擦盘转速的升高和摩擦时间的增加,摩擦块表面逐渐形成稳定的摩擦膜,平均摩擦系数先上升后下降,磨损量先下降后上升,然后再下降;在353N的法向压力下,随着摩擦盘转速的升高和摩擦时间的增加,没有形成稳定的摩擦膜,平均摩擦系数呈增大趋势,磨损量先减小后增大。两种压力下摩擦块的主要磨损形式都从轻微剥落向磨粒磨损转变,最终转变为剥层磨损和黏着磨损。
To investigate the friction and wear performance of the copper-based powder metallurgy braking pad,a pin-disk friction test was conducted on the Universal Material Tester(UMT-5).The influence of rotating speed,pressure and temperature on friction coefficient was analyzed and the surface morphology was observed by using a 3D optical microscope.Following results were obtained:At the 235N normal pressures,a stable friction film is gradually formed on the pad surface as the rotating speed and friction time increase.The average friction coefficient showed a trend of increasing first and then decreasing.The wear of pad and disc both decreased first and then increased,and then decreased again.At the 353N normal pressures,the stable friction film did not appear,the average friction coefficient showed a trend of increasing,and wear of the pad decreased at first and then increased and the wear of the disc increased approximately linearly.The wear mode of the friction block under both pressures changed from slight peeling to abrasive wear,and finally to delamination wear and dhesive wear.
作者
安先龙
王国权
王立勇
陈勇
AN Xian-long;WANG Guo-quan;WANG Li-yong;CHEN Yong(Mechanical Electrical Engineering School,Beijing Information Science&Technology University,Beijing 100192,China;Key laboratory of Modern Measurement and Control Technology,Ministry of Education,Beijing Information Science&Technology University,Beijing 100192,China;Collaborative Innovation Center of Electric Vehicles in Beijing,Beijing Information Science&Technology University,Beijing 100192,China)
出处
《机械设计与制造》
北大核心
2023年第12期209-213,218,共6页
Machinery Design & Manufacture
基金
科技创新服务能力建设-北京实验室建设项目(项目编号:PXM2020_014224_000065)
科技创新服务能力建设-高精尖学科建设-机械工程(分类发展)(77D2111002)。
关键词
铜基粉末冶金摩擦块
摩擦系数
磨损量
摩擦膜
磨损形式
Copper-Based Powder Metallurgy Braking Pad
Friction Coefficient
Wear
Friction Film
Wear Mode