期刊文献+

基于变权重大坝预测模型的组合告警方法研究 被引量:1

Research on combinatorial alarm method based on variable weight dam prediction model
下载PDF
导出
摘要 针对传统大坝测点安全监测采用单一模型进行预测告警时存在虚假警报频次较高、人工干预较少的问题,提出了一种基于预测模型权重分配及修改的大坝测点预测组合模型。以常见的多种预测模型和数据评价指标为研究对象,通过引入残差修正技术对预测结果进行处理,建立预测模型评价指标体系并确定指标的客观和主观权重,依据主客观权重对模型进行排序优选,通过实时的评价指标和告警状态反馈修改优选模型权重进而对大坝测点进行告警。实例验证表明:该告警反馈算法有效降低了误警告频次和告警等级,使结果更加符合大坝性态。 To address the problems of high frequency of false alarms and low manual intervention in the traditional dam measurement point safety monitoring by using a single model for prediction alarms,this paper proposes a combined model for dam deformation prediction based on weight assignment and modification.A variety of common prediction models and data evaluation indicators are used as the research objects,and the prediction results are processed by introducing the residual correction technique,establishing the prediction model evaluation indicator system and determining the objective and subjective weights of the indicators,and ranking and selecting the models based on the objective and subjective weights.The model weights are modified by real-time feedback of the evaluation indexes and alarm status,and then the dam measurement points are alarmed.The experiment proved that the warning feedback algorithm effectively reduces the frequency of false warnings and warning levels,and makes the results more consistent with the dam s sexual state.
作者 李文博 丁勇 李登华 LI Wenbo;DING Yong;LI Denghua(School of Science,Nanjing University of Science and Technology,Nanjing 210094,China;Nanjing Hydraulic Research Institute,Nanjing 210029,China;Key Laboratory of Reservoir Dam Safety of Ministry of Water Resources,Nanjing 210029,China)
出处 《人民长江》 北大核心 2023年第12期233-240,共8页 Yangtze River
基金 国家重点研发计划项目(2022YFC3005502) 国家自然科学基金项目(51979174) 国家自然科学基金联合基金项目(U2040221) 中央级公益性科研院所基本科研业务费专项资金项目(Y322008)。
关键词 大坝监测 变权重 模型优选 告警反馈 dam monitoring variable weight model optimization alarm feedback
  • 相关文献

参考文献16

二级参考文献192

共引文献292

同被引文献20

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部