期刊文献+

图计算体系结构和系统软件关键技术综述 被引量:1

Review of Key Technologies in Graph Processing Architectures and Systems Software
下载PDF
导出
摘要 图计算作为分析事物之间关联关系的重要工具,近年来已成为各国政府及公司争夺的关键技术.学术界和工业界在图计算体系结构和系统软件关键技术方面取得了一定进展.然而,现实场景图计算大多具有动态变化、应用需求复杂多样等特征.这给图计算在基础理论、体系架构和系统软件关键技术方面提出了新的需求,同时也带来了新的挑战.为应对这些挑战,科研人员提出了一系列图计算系统或图计算加速器,通过高性能计算、并行计算等技术来优化图计算过程.综述国内外图计算体系结构和系统软件关键技术的研究发展现状,对国内外研究的最新进展进行归纳、比较和分析,并结合国家发展战略和重大应用需求,选取与我国国计民生密切相关的领域,从典型应用分析总结图计算相关技术的行业进展.最后,就未来的技术挑战和研究方向进行展望. In recent years,some progress has been made in the key technologies of the architecture and systems software for graph processing.Large-scale graph processing has also been widely used in many fields,including scientific computing,machine learning,social networks,intelligent transportation,bioinformatics,etc.However,most real-world graph computations have characteristics such as dynamic changes and complex and diverse application requirements.This poses new demands and challenges for graph processing in terms of basic theory,architecture,and key technologies of systems software.To address these challenges,researchers have proposed a series of graph processing systems and accelerators,which optimize the graph processing process through technologies such as high-performance computing and parallel computing.Furthermore,in order to meet the demands of practical application scenarios,various graph processing frameworks and algorithms are constantly being innovated and optimized,thus enhancing the practical value of graph processing in terms of processing large-scale graph data and improving computational efficiency.We review the research and development status of key technologies in graph processing architecture and systems software,and summarize,compare,analyze the latest progress of research at home and abroad,and select fields closely related to national economy and people’s livelihood in combination with national development strategies and major application requirements.The industry progress of graph processing-related technologies is analyzed and summarized from typical applications.Finally,the future technical challenges and research directions are prospected.
作者 张宇 姜新宇 余辉 赵进 齐豪 廖小飞 金海 王彪 余婷 Zhang Yu;Jiang Xinyu;Yu Hui;Zhao Jin;Qi Hao;Liao Xiaofei;Jin Hai;Wang Biao;Yu Ting(National Engineering Research Center for Big Data Technology and System(Huazhong University of Science and Technology),Wuhan 430074;Services Computing Technology and System Lab(Huazhong University of Science and Technology),Ministry of Education,Wuhan 430074;Cluster and Grid Computing Lab(Huazhong University of Science and Technology),Wuhan 430074;School of Computer Science and Technology,Huazhong University of Science and Technology,Wuhan 430074;Zhejiang Lab,Hangzhou 311121)
出处 《计算机研究与发展》 EI CSCD 北大核心 2024年第1期20-42,共23页 Journal of Computer Research and Development
基金 国家重点研发计划项目(2022YFB2404202) 国家自然科学基金项目(62072193) 之江实验室开放课题(2021KD0AB01) 之江实验室重大科研项目(2022PI0AC03)。
关键词 图计算 体系结构 系统软件 图遍历 图挖掘 图神经网络 单机系统 分布式系统 加速器 行业应用 graph processing architecture systems software graph traversal graph mining graph neural network single machine system distributed system accelerator industry applications
  • 相关文献

参考文献3

二级参考文献10

共引文献12

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部