摘要
Pose-invariant facial expression recognition(FER)is an active but challenging research topic in computer vision.Especially with the involvement of diverse observation angles,FER makes the training parameter models inconsistent from one view to another.This study develops a deep global multiple-scale and local patches attention(GMS-LPA)dual-branch network for pose-invariant FER to weaken the influence of pose variation and selfocclusion on recognition accuracy.In this research,the designed GMS-LPA network contains four main parts,i.e.,the feature extraction module,the global multiple-scale(GMS)module,the local patches attention(LPA)module,and the model-level fusion model.The feature extraction module is designed to extract and normalize texture information to the same size.The GMS model can extract deep global features with different receptive fields,releasing the sensitivity of deeper convolution layers to pose-variant and self-occlusion.The LPA module is built to force the network to focus on local salient features,which can lower the effect of pose variation and self-occlusion on recognition results.Subsequently,the extracted features are fused with a model-level strategy to improve recognition accuracy.Extensive experimentswere conducted on four public databases,and the recognition results demonstrated the feasibility and validity of the proposed methods.
基金
supported by the National Natural Science Foundation of China (No.31872399)
Advantage Discipline Construction Project (PAPD,No.6-2018)of Jiangsu University。