期刊文献+

Deep Global Multiple-Scale and Local Patches Attention Dual-Branch Network for Pose-Invariant Facial Expression Recognition

下载PDF
导出
摘要 Pose-invariant facial expression recognition(FER)is an active but challenging research topic in computer vision.Especially with the involvement of diverse observation angles,FER makes the training parameter models inconsistent from one view to another.This study develops a deep global multiple-scale and local patches attention(GMS-LPA)dual-branch network for pose-invariant FER to weaken the influence of pose variation and selfocclusion on recognition accuracy.In this research,the designed GMS-LPA network contains four main parts,i.e.,the feature extraction module,the global multiple-scale(GMS)module,the local patches attention(LPA)module,and the model-level fusion model.The feature extraction module is designed to extract and normalize texture information to the same size.The GMS model can extract deep global features with different receptive fields,releasing the sensitivity of deeper convolution layers to pose-variant and self-occlusion.The LPA module is built to force the network to focus on local salient features,which can lower the effect of pose variation and self-occlusion on recognition results.Subsequently,the extracted features are fused with a model-level strategy to improve recognition accuracy.Extensive experimentswere conducted on four public databases,and the recognition results demonstrated the feasibility and validity of the proposed methods.
出处 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期405-440,共36页 工程与科学中的计算机建模(英文)
基金 supported by the National Natural Science Foundation of China (No.31872399) Advantage Discipline Construction Project (PAPD,No.6-2018)of Jiangsu University。
  • 相关文献

参考文献1

二级参考文献38

  • 1Zheng W M. Multi-view facial expression recognition based on group sparse reduced-rank regression. IEEE Transactions on Affective Com- puting, 2014, 5(1): 71-85.
  • 2Eleftheriadis S, Rudovic O, Pantie M. Discriminative shared gaussian processes for multiview and view-invariant facial expression recogni- tion. IEEE Transactions on Image Processing, 2015, 24(1): 189-204.
  • 3Liu P, Han S Z, Meng Z B, Tong Y. Facial expression recognition via a boosted deep belief network. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2014, 1805-1812.
  • 4Zeng Z, Pantic M, Roisman G I, Huang T S. A survey of affect recogni- tion methods: audio, visual, and spontaneous expressions. IEEE Trans- actions on Pattern Analysis and Machine Intelligence, 2009, 31(1): 39- 58.
  • 5Moore S, Bowden R. Local binary patterns for multi-view facial expression recognition. Computer Vision and Image Understanding, 2011, 115(4): 541-558.
  • 6Hesse N, Gehrig T, Gao H, Ekenel H K. Multi-view facial expression recognition using local appearance features. In: Proceedings of Inter- national Conference on Pattern Recognition. 2012, 3533-3536.
  • 7Rudovic O, Pantic M, Patras I. Coupled Gaussian processes for pose- invariant facial expression recognition. 1EEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1357-1369.
  • 8Kumano S, Otsuka K, Yamato J, Maeda E, Sato Y. Pose-invariant facial expression recognition using variable-intensity templates. International Journal of Computer Vision, 2009, 83(2): 178-194.
  • 9Biswas A, Ghose M K. Expression invariant face recognition using DWT sift features. International Journal of Computer Applications, 2014, 92(2): 30-32.
  • 10Jian S, Hu C B, Aggarwal J K. Facial expression recognition with tem- poral modeling of shapes. In: Proceedings of IEEE International Con- ference on Computer Vision. 2011, 1642-1649.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部