期刊文献+

拓扑空间中的理想收敛

Ideal Convergence in Topological Space
下载PDF
导出
摘要 用理想收敛结构解决定向拓扑的刻画问题,给出理想S极限和理想广义S极限可拓扑化的充要条件.结果表明:T0拓扑空间上的定向拓扑、理想S极限拓扑和理想广义S极限拓扑相同;定向空间中的理想S收敛是拓扑的当且仅当其为c-空间;定向空间中理想广义S收敛是拓扑的当且仅当其为局部强紧空间. We used an ideal convergence structure to solve the characterization problem of directed topology,and provided necessary and sufficient conditions for the topological transformation of ideal S limits and ideal generalized S limits.The results show that the directed topology,the ideal S limit topology and the ideal generalized S limit topology are the same in T 0 topological spaces.The ideal S convergence in a directed space is topological if and only if it is a c-space.The ideal generalized S convergence in a directed space is topological if and only if it is a locally strongly compact space.
作者 王武 张舜 WANG Wu;ZHANG Shun(Department of Foundation,Zhonghuan Information College Tianjin University of Technology,Tianjin 300380,China;Department of Mathematics Teaching,Tianjin Ren’ai College,Tianjin 301636,China)
出处 《吉林大学学报(理学版)》 CAS 北大核心 2024年第1期13-19,共7页 Journal of Jilin University:Science Edition
基金 天津市教委科研计划项目(批准号:2023KJ281) 高等学校大学数学教学研究与发展中心教改项目(批准号:CMC20210115)。
关键词 理想S极限 理想广义S极限 c-空间 局部强紧空间 定向拓扑 ideal S limit ideal generalized S limit c-space locally strongly compact space directed topology
  • 相关文献

参考文献12

二级参考文献35

  • 1Abramsky S, Jung A. Domain Theory, Handbook of logic in computer science[M]. Oxford: Oxford Uni- versity Press, 1994.
  • 2Battenfeld I. A Category of topological predomains [D]. Darmstadt: Technische Universitit Darmstadt, 2004.
  • 3Battenfeld I. Computational effects in topological do- main theory [J]. Electronic Notes in Theoretical Computer Science, 2006, 158: 65.
  • 4Bauer A. A relationship between equilogical spaces and type two effectivity[J]. Electronic Notes in The- oretical Computer Science, 2001, 45 : 18.
  • 5Bauer A, Birkedal L, Scott D. Equilogical spaces [J]. Theoretical Computer Science, 2004, 315: 40.
  • 6Battenfeld I, Schr6der M, Simpson A. A convenient category of domains[J]. Electronic Notes in Theoret- ical Computer Science, 2007, 172: 75.
  • 7Gierz G, Hofmann K H, Keimel K, et al. Continu- ous lattices and domains[M]. Cambridge: Cambridge University Press, 2003.
  • 8Jung A. The classification of continuous domains [C]// IEEE Computer Society: Logic in Computer Science, 1990.
  • 9Schr6der M, Simpson A. Two preservation results for countable products of sequential spaces [J]. Mathematical Structure in Computer Science, 2007, 17: 12.
  • 10罗清君.R0代数中素滤子的拓扑性质[J].数学学报(中文版),2008,51(4):795-802. 被引量:16

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部