摘要
用理想收敛结构解决定向拓扑的刻画问题,给出理想S极限和理想广义S极限可拓扑化的充要条件.结果表明:T0拓扑空间上的定向拓扑、理想S极限拓扑和理想广义S极限拓扑相同;定向空间中的理想S收敛是拓扑的当且仅当其为c-空间;定向空间中理想广义S收敛是拓扑的当且仅当其为局部强紧空间.
We used an ideal convergence structure to solve the characterization problem of directed topology,and provided necessary and sufficient conditions for the topological transformation of ideal S limits and ideal generalized S limits.The results show that the directed topology,the ideal S limit topology and the ideal generalized S limit topology are the same in T 0 topological spaces.The ideal S convergence in a directed space is topological if and only if it is a c-space.The ideal generalized S convergence in a directed space is topological if and only if it is a locally strongly compact space.
作者
王武
张舜
WANG Wu;ZHANG Shun(Department of Foundation,Zhonghuan Information College Tianjin University of Technology,Tianjin 300380,China;Department of Mathematics Teaching,Tianjin Ren’ai College,Tianjin 301636,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2024年第1期13-19,共7页
Journal of Jilin University:Science Edition
基金
天津市教委科研计划项目(批准号:2023KJ281)
高等学校大学数学教学研究与发展中心教改项目(批准号:CMC20210115)。
关键词
理想S极限
理想广义S极限
c-空间
局部强紧空间
定向拓扑
ideal S limit
ideal generalized S limit
c-space
locally strongly compact space
directed topology