摘要
利用紧性方法给出能量临界分数阶非线性Schr9dinger方程Cauchy问题解的存在性,并证明Cauchy问题存在整体解.通过构造逼近方程,对满足逼近方程的解序列取极限,得到的极限函数即为能量临界分数阶非线性Schr9dinger方程的整体弱解,并证明该弱解满足能量不等式和质量守恒性质.
By using the compactness method,we gaved the existence of solutions to the Cauchy problem of the energy-critical fractio nal nonlinear Schr dinger equation and proved the existence of global solution to the Cauchy problem.By constructing the approximation equation and takin g the limit of the solution sequence satisfying the approximation equation,the obtained limit function was the global weak solution of the energy-critical fractional nonlinear Schr dinger equation,and it was proved that the weak solution satisfied the energy inequality and mass conservation property.
作者
武少琪
廖梦兰
曹春玲
WU Shaoqi;LIAO Menglan;CAO Chunling(School of Mathematics,Hohai University,Nanjing 211100,China;College of Mathematics,Jilin University,Changchun 130012,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2024年第1期87-91,共5页
Journal of Jilin University:Science Edition
基金
中央高校基本科研基金(批准号:B230201033
423139)
广东省数字信号与图像处理技术重点实验室开放课题基金(批准号:2021GDDSIPL-02)
江苏省自然科学基金(批准号:BK20221497)。