期刊文献+

不同成分铝/铜双金属复合材料的热变形行为及其本构模型

Constitutive model for hot deformation behaviors of Al/Cu bimetal composites based on their components
下载PDF
导出
摘要 通过等温压缩实验,研究Al/Cu双金属复合材料在400~500℃、应变速率0.001~0.1 s^(-1)条件下的热变形行为,并考虑复合材料成分体积分数(Al含量为30%~51%)的影响。采用Arrhenius模型和混合定律(ROM)模型建立新的本构方程。流变应力(FS)实验表明,工艺参数和体积分数对复合材料的流变行为有影响,而Cu的体积分数对复合材料的高温流变行为影响更大。对于体积分数为51%、42%和30%Al的复合材料,建立的Arrhenius型本构方程和ROM模型的相关系数(R)分别为0.9826、0.9742和0.9718,其平均相对误差分别为0.18%、1.69%和-0.84%。结果表明,新建立的本构模型能较好地预测双金属复合材料的热加工行为。最后,研究不同工艺条件下复合材料的显微组织,确定三种不同成分Al/Cu复合材料在不同温度、应变和应变速率范围内的主要热变形机制。 The hot deformation behavior of Al/Cu bimetal composites was investigated using isothermal compression tests at temperatures of 400-500℃ and strain rates of 0.001-0.1 s^(-1) by considering the effects of volume fractions of composite components(30%-51%Al).In this regard,new proper constitutive equations were developed using Arrhenius-type and the rule of mixture(ROM)models.Experimental flow stress(FS)showed that processing parameters and volume fraction affect the flow behavior of composite as the volume fraction of copper has a more substantial impact on the flow behavior of the composite rods at elevated temperatures.The values of correlation coefficient(r)and average relative error of the developed Arrhenius-type constitutive equation and ROM model were 0.9826,0.9742 and 0.9718,and also 0.18%,1.69% and -0.84% for volume fractions of 51%,42% and 30%Al,respectively.The results indicate that the newly developed constitutive model can successfully predict the hot working behavior of the considered bimetal composite.Finally,the microstructure of composites was investigated under different processing conditions.The dominant mechanisms for three considered volume fractions were identified at different temperatures,strains,and strain rates specified for the hot deformation of the Al/Cu composite.
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CSCD 2023年第12期3641-3660,共20页 中国有色金属学报(英文版)
关键词 铝/铜双金属复合材料 热变形 混合定律(ROM) 本构方程 力学行为 显微组织 Al/Cu bimetal composite hot deformation rule of mixture(ROM) constitutive equation mechanical behavior microstructure
  • 相关文献

参考文献7

二级参考文献63

  • 1A. Gibson, Emerging applications for copper-clad steel and aluminum wire, Wire J. Int., 41(2008), No. 2, p. 142.
  • 2K. Nakasuji, K. Masuda, and C. Hayashi. Development of manufacturing process of clad bar by rotary rolling, ISIJ Int., 37(1997), No. 9, p. 899.
  • 3T. Yamaguchi, T. Takayama, and M. Hiderita, Method for Producing Copper Clad Aluminum. Wire, USA Patent, Appl. 3854193, 1974.
  • 4K.Y. Rhee, W.Y. Han, H.J. Park, and S.S. Kim, Fabrication of aluminum/copper clad composite using hot hydrostatic extrusion process and its material characteristics, Mater. Sci. Eng. A, 384(2004), No. 1-2, p. 70.
  • 5N. F. Neumann, Continuous Casting, USA patent, Appl. 3421569. 1969.
  • 6J.X. Xie, C.J. Wu, X.F. Liu, and X.H. Liu, A novel forming process of copper cladding aluminum composite materials with core-filling continuous casting, Mater. Sci. Forum, 539-543(2007), No. 1, p. 956.
  • 7Y.J. Su, X.H. Liu, H.Y. Huang, C.J. Wu, X.F. Liu, and J.X. Xie, Effects of processing parameters on the fabrication of copper cladding aluminum rods by horizontal core-filling continuous casting, Metall. Mater. Trans. B, 42(2011), No. 1, p. 104.
  • 8Y.J. Su, X.H. Liu, H.Y. Huang, X.F. Liu, and J.X. Xie, Interfacial microstructure and bonding strength of copper cladding aluminum rods fabricated by horizontal corefilling continuous casting, Metall. Mater. Trans. A, 42(2011), No. 13, p. 4088.
  • 9A. Rami'rez-Lopez, R. Aguilar-Lopez, M. Palomar-Pardave, M.A. Romero-Romo, and D. Munoz-Negron, Simulation of the heat transfer on steel billets during continuous casting, Int. J. Miner. Metall. Mater., 17(2010), No.4, p. 403.
  • 10Y.J. Xia, F.M. Wang, J.L. Wang, and G.Z. Li, Simulation of the continuous casting process in a mold of free-cutting steel 38MnVS based on a MiLE method, Int. J. Miner. Metall. Mater., 18(2011), No. 5, p. 562.

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部