期刊文献+

基于FPDE-SIFT的声呐干涉图像配准方法

Interference Image Registration Based on FPDE-SIFT for Sonar
下载PDF
导出
摘要 图像配准是声呐进行高精度干涉测量的保障,该文针对水下目标的声呐图像配准,提出了一种基于4阶偏微分方程尺度不变特征变换的声呐干涉图像配准方法。该方法聚焦声呐图像配准的难点,首先基于4阶偏微分方程构建尺度空间,在保持图像细节的前提下滤除噪声,提高特征提取的准确度;对于残余噪声造成的特征点误检,借助特征点的相位一致性信息加以筛选,精简特征点样本集;最后对特征点匹配策略进行优化,提出改进的快速样本一致性匹配策略剔除特征点的误匹配。算法增加了匹配点对的数量,提高了匹配点对的准确度,实现了声呐干涉图像的精确配准。水池实验和外场试验表明,该文所提出的算法相较现有算法对声呐图像有着更好的适用性,配准后的均方根误差与留一法均方根均小于1像素,达到了亚像素配准精度。 Image registration is the cornerstone of sonar for high-precision interferometry.This study presents an innovative method for registering sonar interference images,utilizing the Fourth-order Partial Differential Equation(FPDE)in conjunction with the scale-invariant feature transform.This technique is specifically tailored for underwater sonar targets.This method specifically addresses the challenges associated with sonar image registration.First,we establish the scale space by employing the FPDE.This process filters noise while preserving image details,resulting in an improved accuracy of feature extraction.The proposed method utilizes phase congruency information to counter false feature point detection due to the residual noise,thereby screening and simplifying the sample set of feature points.Ultimately,the features point matching strategy undergoes optimization,with an enhanced fast sample consensus matching strategy proposed to rectify feature point mismatches.The algorithm increases the number of matching point pairs and augments their precision,ultimately achieving precise registration of sonar interference images.Rigorous tests,both under controlled conditions and lake environments,demonstrate the algorithm’s superior applicability to sonar images compared with existing approaches.The root-mean-square-error and mean-square-error are calculated post-registration using leave-one-out analysis,both are under one pixel,attesting to the algorithm’s achievement of sub-pixel registration accuracy.
作者 刘伟陆 周天 闫振宇 杜伟东 LIU Weilu;ZHOU Tian;YAN Zhenyu;DU Weidong(National Key Laboratory of Underwater Acoustic Technology,Harbin Engineering University,Harbin 150001,China;Key Laboratory of Marine Information Acquisition and Security(Harbin Engineering University),Ministry of Industry and Information Technology,Harbin 150001,China;College of Underwater Acoustic Engineering,Harbin Engineering University,Harbin 150001,China;Key Laboratory of Polar Acoustics and Application of Ministry of Education,Ministry of Education,Harbin 150001,China)
出处 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第1期101-108,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(42176192,41976176,42176188,52001097)。
关键词 声呐图像配准 尺度不变特征变换 偏微分方程 相位一致性 快速样本一致性 Sonar image registration Scale-invariant feature transform Partial differential equation Phase congruency Fast sample consensus
  • 相关文献

参考文献7

二级参考文献33

  • 1张揽月,杨德森.矢量水听器扩展孔径线阵方位估计技术[J].哈尔滨工程大学学报,2004,25(6):714-718. 被引量:5
  • 2张友文,田坦,孙大军.干涉合成孔径声呐复图像配准[J].哈尔滨工程大学学报,2005,26(1):75-79. 被引量:4
  • 3陈建,王树勋.基于高阶累积量虚拟阵列扩展的DOA估计[J].电子与信息学报,2007,29(5):1041-1044. 被引量:22
  • 4Tomasi C and Manduchi R. Bilateral filtering for gray and color images[C]. Proc. International Conference on Compute Vision, Bombay, India, 1998:839-846.
  • 5Peroma P and Malik J. Scale space and edge detection using anisotropic diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7): 629- 637.
  • 6Liu C, Yuen J, and Torralba A. SIFT flow: dense correspondence across scenes and its applications][J]. IEEE Transaetions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 978-994.
  • 7Lei H and Zhen L. Feature-based image registration using the shape context[J]. International Journal of Remote Sensing, 2010, 31(8): 2169-2177.
  • 8Martin V, Mar fill R, and Bandera A. Affine image region detection and description [J]. Journal of Physical Agents, 2010, 4(1): 45-54.
  • 9Gupta R, PatiI H, and Mittal A. Robust order-based methods for feature description[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco. USA. 2010:334 341.
  • 10Pele O and Werman M. The quadratic-chi histogram distance family[C]. The llth European Conference on Computer Vision (ECCV 2010), Crete, Greece, 2010: 749-762.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部