期刊文献+

一种气温降尺度的半循环对抗生成网络 被引量:1

Half-Cycle Generative Adversarial Networkfor Temperature Downscaling
下载PDF
导出
摘要 提出了一种半循环对抗生成降尺度模型,应用于ERA5再分析全球气候地表温度数据在中国及其周边地区的降尺度,该模型引入了重建生成器网络和退化生成器网络,采用对抗损失和半循环损失来优化降尺度结果。通过消融实验验证了该模型的有效性。结果表明,与传统的插值方法以及其他深度学习模型相比,该模型在客观评价指标上有所提高,所生成的地表温度数据细节更加丰富。 This paper proposes a half-cycle generative adversarial downscaling model and applies it to downscale ERA5 reanalysis global climate surface temperature data in China and its surrounding regions.This model introduces both a reconstruction generator network and a degradation generator network and optimizes the downscaling results using adversarial loss and half-cycle loss.The effectiveness of this method was validated through ablation experiments.The results show that compared with traditional interpolation methods and other deep learning models,this model exhibits improvements in objective evaluation metrics,resulting in more detailed surface temperature data generated.
作者 黎瑞泉 翁彬 陈家祯 黄添强 游立军 LI Ruiquan;WENG Bin;CHEN Jiazhen;HUANG Tianqiang;YOU Lijun(College of Computer and Cyber Security,Fujian Normal University,Fuzhou 350117,China;Digital Fujian Institute of Big Data Security Technology Institute,Fuzhou 350117,China;Fujian Provincial Engineering Research Center for Public Service Big Data Mining and Application,Fuzhou 350117,China;Fujian Meteorological Information Center,Fuzhou 350007,China;Fujian Key Laboratory of Severe Weather,Fuzhou 350007,China)
出处 《福建师范大学学报(自然科学版)》 CAS 北大核心 2024年第1期87-95,共9页 Journal of Fujian Normal University:Natural Science Edition
基金 国家重点研发计划专项(2018YFC1505805) 福建省引导性项目(2021Y0057,2022Y0008) 福建师大教改项目(I202201105)。
关键词 对抗生成网络 降尺度 深度学习 generative adversarial networks downscaling deep learning
  • 相关文献

参考文献3

二级参考文献18

共引文献11

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部