期刊文献+

CFM-UNet:A Joint CNN and Transformer Network via Cross Feature Modulation for Remote Sensing Images Segmentation 被引量:3

下载PDF
导出
摘要 The semantic segmentation methods based on CNN have made great progress,but there are still some shortcomings in the application of remote sensing images segmentation,such as the small receptive field can not effectively capture global context.In order to solve this problem,this paper proposes a hybrid model based on ResNet50 and swin transformer to directly capture long-range dependence,which fuses features through Cross Feature Modulation Module(CFMM).Experimental results on two publicly available datasets,Vaihingen and Potsdam,are mIoU of 70.27%and 76.63%,respectively.Thus,CFM-UNet can maintain a high segmentation performance compared with other competitive networks.
出处 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第4期40-47,共8页 测绘学报(英文版)
基金 Young Innovative Talents Project of Guangdong Ordinary Universities(No.2022KQNCX225) School-level Teaching and Research Project of Guangzhou City Polytechnic(No.2022xky046)。
  • 相关文献

参考文献2

二级参考文献8

共引文献20

同被引文献18

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部